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ABSTRACT 
 
This paper examines the dramatic visual fingerprints 
left by a wide variety of popular network attack tools in 
order to better understand the specific methodologies 
used by attackers as well as the identifiable 
characteristics of the tools themselves.  The techniques 
used are entirely passive in nature and virtually 
undetectable by the attackers.  While much work has 
been done on active and passive operating systems 
detection, little has been done on fingerprinting the 
specific tools used by attackers.  This research explores 
the application of several visualization techniques and 
their usefulness toward identification of attack tools, 
without the typical automated intrusion detection 
system’s signatures and statistical anomalies.  These 
visualizations were tested using a wide range of 
popular network security tools and the results show 
that in many cases, the specific tool can be identified 
and provides intuition that many classes of zero-day 
attacks can be rapidly detected and analyzed using 
similar techniques. 

Categories and Subject Descriptors 
H.5.2 [Information Systems]:  Information Interfaces 
and Presentation - User Interfaces  

C.2.3 [Computer-Communication Networks]:  Network 
Operations:  Network monitoring 

C.2.0 [Computer-Communication Networks]:  General 
- Security and Protection 

General Terms 
Security 

Keywords 
network attack visualization, visual fingerprinting, 
application fingerprinting, passive fingerprinting, 
operating system fingerprinting, information 
visualization 

1. BACKGROUND AND MOTIVATION 
 

Classical algorithmic intrusion detection systems (IDS) 
rely upon machine-detected signatures and statistical 
anomalies to discover intrusions.  While great progress 
has been made, there exists an unacceptable rate of 
false positives and false negatives in such systems.  By 
allowing the network analyst to continually observe 
network traffic in a highly efficient manner, analysts 
develop an intuitive feel for the usually legitimate and 
sometimes anomalous activities on their network in a 
way that augments more traditional systems.  False 
positives and false negatives become of an entirely 
different character.  For example, an anomaly-based 
intrusion detection system may be slowly trained over 
time to overlook malicious activity and a signature-
based intrusion detection system generally will not 
detect new attacks unless they exist in its signature 
database.  While it is still possible to fool a network 
analyst or system administrator, we argue that properly 
designed visualizations enhance the capabilities of the 
human in such a way that greatly complicates the 
efforts of an attacker.   

 
Figure 1: Mutually Supporting Capabilities of              

Intrusion Detection Systems 

A human will inherently detect different signatures and 
different anomalies.  Historically, such fields as 
machine vision and machine learning have shown that 
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the tasks in which a machine stands out are typically 
entirely different from those in which humans excel.  
This is a strong argument for research into visual 
intrusion detection. A would-be intruder must fool both 
the human and the machine.  Figure 1. illustrates the 
mutually supporting capabilities of these 
complementary intrusion detection systems.  The 
shaded area is the increased coverage provided by a 
visual intrusion detection system.  We believe that 
classical intrusion detection systems working 
symbiotically with a visualization-enhanced human will 
outperform algorithmic systems operating alone.  By 
bringing humans more directly into the intrusion 
detection loop, correct visualizations can tap into the 
high bandwidth visual recognition capabilities of the 
human cognitive system and help address the serious 
problem of false positives and false negatives that 
exists today.  As experienced amateur radio operators 
can immediately identify digital signals based upon 
their audio characteristics, so can human analysts 
visually identify network attacks even if they do not 
exactly match the precise signatures or statistical 
anomalies of past attacks.  For a visual intrusion 
detection system to be effective it must focus on tasks 
that cannot be easily performed by an automated 
system.  Section 3.1 lists the subset of these tasks we 
focused on for this work. 

 

In this paper we argue the following benefits of 
visualization:  

• Specific attack tools, and to a lesser-degree 
their host operating system, can be passively 
identified by their visual signature. This aids 
law enforcement forensics, provides insight 
into an attacker’s methodology and experience 
level and helps allow the network defender to 
initiate appropriate responses.  

• Some stealthy attacks are resistant to detection 
by traditional intrusion detection systems, but 
are readily visible using appropriate 
visualizations. 

• Visualization techniques can be used that 
require little state and are remarkably resistant 
to overload caused by high volume network 
traffic and resource consumption attacks that 
can incapacitate traditional intrusion detection 
systems.  The lightweight, fixed memory 
requirements of some of these visualizations 

allow visual intrusion detection systems to 
operate for long periods of time. 

• With appropriate visualizations of network 
traffic there is no such thing as a false positive 
or false negative as typically defined in the 
classical intrusion detection system domain.  
Human operators can still be fooled, but the 
character of human decision-making is entirely 
different from that of machines.  Consider the 
problems encountered when attempting to filter 
spam.  A human can immediately identify most 
spam, where computer algorithms provide only 
limited detection.  This diversity provides 
overlapping capabilities that, when combined, 
provide greater effectiveness than an IDS or 
human operating alone. 

• By their very nature, most zero-day (never seen 
before) attacks do not match existing intrusion 
signatures. Visualization techniques can 
provide clues to impending attacks and 
facilitate quick response analysis.  For 
example, the scanning of a newly released 
worm would be readily apparent. 

• Distributed scanning and slow scanning (hours-
weeks) can be effectively detected. 

• While legitimate network traffic can cloud the 
visual intrusion detection environment of a 
given network, many attacks are still readily 
apparent through the noise. 

  

The goal of this paper is to explore and defend these 
claims as well as systematically examine the strengths 
and weaknesses of several visualization techniques as 
they are applied to network intrusion detection.    

 

Section 2 examines the current state of the art in this 
area.  Section 3 explores the task-driven development 
of candidate visualizations and their usefulness toward 
analysis of attack tools.  Section 4 describes the results 
from a series of controlled laboratory experiments.  
Section 5 presents our conclusions and directions for 
future research. 
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2. RELATED WORK 
 

The primary contributions of this work include the 
demonstration of the efficacy of fingerprinting common 
attack tools, the ability to provide rapid insight into the 
attacker’s operating system type and the possible 
lineage of the code in use, the ability to detect some 
classes of stealthy attacks and the ability to detect slow 
scans despite the visual noise of legitimate traffic. 
Related work falls into several main areas including  
current network security visualization research as well 
as application and operating systems fingerprinting.  
While network visualization and intrusion detection are 
relatively mature areas, there is a limited body of work 
covering network security visualization.  
Representative recent research includes analysis of the 
stability of Internet routing[1,2], analysis of stepping 
stone pairs[3], monitoring the security status of large 
networks[4], mapping of the Internet[5,6], application 
of statistical methods for intrusion detection[7], 
intruder behavior characterization[8], worm 
propagation[9], rapid prototyping[10], TCP/IP 
sequence number generation[11,12], haptic integration 
[13] and the construction of a toolkit for visual 
intrusion detection[14].  Availability of security-centric 
commercial and open source/free visualization systems 
is likewise limited.  Representative examples include: 
SecureScope[15], StealthWatch + Therminator [16], 
Ethereal[17], Etherape[18], Netstumbler[19], 
3DTraceroute[20] and XTraceroute[21].   

 

3. NETWORK SECURITY VISUALIZATION 
PROCESS 

 

We chose a comprehensive approach to visualize 
network attacks that included consideration of all TCP, 
UDP, IP and Ethernet header fields as well as many 
features that can be derived from this data.  After 
examining the data available, we considered a broad 
range of visualization techniques from classic 
information visualization literature and current research 
in network security visualization.  Finally, we 
examined a variety of network attack tools from the 
Top 75 Network Security Tool List produced by 
fyodor, the creator of nmap [22].  This list was 
constructed based on a May 2003 survey of nmap 
developers.  From this consideration of data, 
visualization techniques and security tools we 

constructed a series of experiments to test the 
hypothesis that these tools could be effectively 
fingerprinted.  We understand that a proficient attacker 
can evade many of these techniques, primarily due to 
lack of authentication in today’s network protocols, but 
feel that they remain some of the most effective 
techniques at present.  Such is the case with much of 
the information security field, for now and into the 
foreseeable future it will likely continue to be an on 
going battle of one-upmanship. 

 

3.1 Task Analysis 
 

Specifically, we wished to design visualizations that 
would effectively visualize passively captured packets 
in real time in order to accomplish the following goals: 

• fingerprint popular attack tools 

• provide insight into the attacker’s operating 
system 

• detect stealthy attacks (TCP evasion 
techniques in particular) 

• provide insight into future zero-day attack 
detection systems 

• detect slow scans 

• detect distributed scans 

• detect attacks despite the visual noise of 
legitimate traffic 

• supplement traditional signature and anomaly 
based intrusion detection systems so as to 
reduce the overall number of false positives 
and false negatives. 

 

The degree to which we were able to achieve each of 
these goals is discussed in the results section. 

 

3.2 Exploration of Available Data 
 

3.2.1  Direct Data 
Passive sniffing tools such as tcpdump[23] and 
snort[24] make available all of the header information 
contained in packets as they traverse an Ethernet 
collision domain.  To constrain the problem, we limited 
our consideration to the most common protocols: 
Ethernet, TCP, IP and UDP, believing these would 
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provide representative insights that could generally be 
applied to other protocols.  The packet formats of these 
protocols are well documented.  By carefully 
considering the relevancy of the direct data available 
and the applications to be analyzed it is possible to 
construct candidate visualizations.  As a simple 
example, if one is attempting to fingerprint a simple 
port scanning program it is useful to visualize the 
source IP, destination IP, source TCP port, source UDP 
port, destination TCP port and destination UDP port.  
In addition, the ability to analyze attack tools using 
direct data from a sniffing program is enhanced by the 
use of feature construction.  Feature construction is 
discussed in section 3.2.2. 

 

3.2.1.1 Link Layer (Ethernet) 
Link layer headers are typically created by the node 
one link distant from the receiving node.  For this 
information to be compromised a nearby node must 
also have been compromised.  Link layer information is 
particularly useful for detecting anomalous behavior 
initiated on a local network segment:  for example, to 
detect 802.11b wireless network abuse, address 
resolution (ARP) spoofing and attempts to sniff across 
collision domains in a switched network (e.g. switch 
flooding, ARP redirects and MAC address spoofing).  
For purposes of this paper we chose to consider source 
MAC address, destination MAC address and the 
overall length (in bytes) of the Ethernet frame. 

 

3.2.1.2 Network Layer (IP) 
Network layer packets are used for host-to-host 
communication across the Internet and have been 
subject to much abuse by malicious entities.  While we 
chose to focus our visualizations on the source and 
destination IP address fields there are many areas for 
future work.  Of particular interest are the time to live 
(TTL) field and the fragmentation offset which can be 
used for such activities as detecting Honeynets[25] and 
insertion and evasion attacks to bypass intrusion 
detection systems[26]. 

 

3.2.1.3 Transport Layer (TCP and UDP) 
Transport layer protocols provide process-to-process 
connectivity across the Internet.  Both TCP and UDP 
use the notion of ports to support this connectivity.  
Due to the fact that ports are fundamental to Internet 

connectivity and that many attack tools probe these 
ports in an attempt to discover vulnerabilities we chose 
to include the source and destination ports for TCP and 
UDP for our visualizations.  For future work we leave 
the visual examination of TCP sequence numbers and 
flags. 

 

3.2.1.4 Application Layer 
Application layer headers and data provide a great deal 
of information about the nature of attacks, but due to 
the wide variety of application layer protocols we 
chose to limit our visualization research to raw hex and 
printable ASCII decodes of this data.  There is a great 
deal of research potential in the visual examination of 
application layer data.  As an example, many zero-day 
network-based buffer overflow attacks will likely have 
distinct visual signatures.  

 

3.2.2 Feature Construction 
Feature construction allows one to add new attributes 
to the packet capture dataset constructed based upon 
the captured data as well as information from the 
network security domain[27].  We chose the following 
candidate features as useful for visualization:  

• Cumulative source and destination ports (by 
protocol) used for a given period. 

• Cumulative source and destination IP addresses 
(by transport protocol) used for a given period. 

• Sequence of packets and ports (by transport 
protocol and length) used during a given 
period. 

• The notion of home network and external 
network.  This allows the analyst to define the 
locality of their services and packets.  This also 
facilitates graphing that is relative to internal 
and external networks and is similar to what is 
seen in Snort configuration [28]. 

 

While we chose just the subset of possible features 
listed above, for future work we would like to consider 
other possibilities.  The literature of intrusion detection 
has a rich body of work to draw upon when considering 
visual network intrusion detection [29].  Generalizing 
the feature construction survey by Brugger [30] 
potential candidates include visualization of the time 
variant nature of network traffic (e.g. duration of 
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connections & services, timestamp of packets), 
conformance to protocols, IP and TCP flag usage,  
number and type of packets/protocols, number and type 
of connections, number of resent and duplicate packets, 
amount of fragmentation, services available/used and 
errors encountered.   To this list we would add the 
following features as potentially interesting candidates 
for visualization:  stated checksum vs. actual checksum 
(for each layer), stated length vs. actual length (for each 
layer), transformation from time domain to frequency 
domain (using Fourier transforms), time between 
packets, probable operating system, additional IDS 
evasion techniques (dropped packets, packet overlap, 
out of order packets, known malformed packet types 
[31]) and the likelihood of human vs. machine 
operation based on packet timing.  Finally we believe 
the use of composite variables and the general 
application of the following statistical measures will 
prove useful: duration, frequency, quantity, ratios, 
percentages, deviation from independence, influence, 
standard deviation, variance, average, mean, median 
and mode. 

 

Figure 2: External IP to Internal IP (left), External IP to 
Internal Port (center) and External Port to Internal Port 

(right)  Parallel Coordinate Plots 

 

3.3 Visualizations 

3.3.1 Introduction 
There are a wide variety of potential visualizations 
that can be used to display network traffic data in a 
way that is meaningful for security analysis.  The 
comprehensive surveys by Tufte [32,33,34] and 
Spence [35] cover classical information visualization 
techniques in detail and are very useful for inspiration.  
From this range, we selected the parallel coordinate 

plot [36,37,38] for its strength in showing 
relationships within hypervariate datasets as well as its 
proven usefulness in the intrusion detection domain 
[39].  We also selected a technique similar to that used 
in the Seesoft system to help illuminate the time 
variant aspect of the network traffic [40].  

Figure 3: External IP to External Port to Internal Port to 
Internal IP Parallel Coordinate Plot 

Figure 4: External Port to External IP to Internal IP to 
Internal IP Parallel Coordinate Plot 

3.3.2 Parallel Coordinate Plots 
For parallel coordinate visualizations, we limited our 
variables to:  source IP, destination IP, source port, 
destination port and protocol type (TCP or UDP, 
inbound or outbound from home network).  The 
parallel coordinate plots below extend previous work in 
the VisFlowConnect system[4] by applying additional 
dimensionality, alternative encoding techniques, real-
time packet capture and focused attack tool specific 
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data.  We used parallel coordinate plots of the 
hypervariate data in the following combinations: 

• External IP to Internal IP (figure 2, left) 

• External IP to Internal Port (figure 2, center) 

• External Port to Internal Port (figure 2, right)  

• External IP to External Port to Internal Port to 
Internal IP (figure 3)  

• External Port to External IP to Internal IP to 
Internal Port  (figure 4) 

Ports and IP addresses are plotted on a continuous 
scale.  Alternatively we could have chosen to treat 
those fields as categorical or ordinal data by allocating 
space to only those data points encountered in the real-
time network traffic.   This proved to be in conflict 
with our design goal of a lightweight system as a buffer 
and significant screen redrawing would be required.  
Ultimately we chose the continuous scale in an attempt 
to provide an effective overview of network activities 
and allow the technique to scale to very large networks.  
The advantage is that the entire 32-bit IP address space 
can be viewed at a glance.  We understand that this 
comes at the cost of coarser resolution.  Future systems 
will incorporate improved zoom, filter and details-on-
demand capabilities to complement this technique.  
Color is mapped to the protocol in use as well as the 
direction (to/from home network). The left side of the 
plot is considered to be the external network and the 
right side is considered to be the home network (as 
defined by the network analyst) 

3.3.3 Scrolling Packet Plots 
We chose two variants of a scrolling visualization to 
provide insight into the time-variant nature of the 
network traffic.  While our parallel coordinate plots 
were designed to show the overall relationships 
between source and destination IP addresses and 
TCP/UDP ports we wished to create visualizations 
that would better show a running sequence of packet 
data as they arrived at our observation point. 

Figure 5: Scrolling Protocol Type over Time 

3.3.3.1 Simple Categorical Scrolling Plot 
The first plot mapped packet protocol type 
(TCP/UDP) and direction (inbound/outbound from the 
home network) to specific colors and vertical 
locations on the screen. (figure 5)  As each packet was 
captured it was plotted as a small vertical line, one 
pixel wide, on the graph.  Its position on the horizontal 
axis was incremented (to the right) by one pixel with 
each packet.  When network traffic caused the plot to 
move to the extreme right it wrapped around, 
beginning at the extreme left.  A vertical marker line 
spanning the entire plot window was used to indicate 
current position.  This marker was placed one position 
ahead of the current plot. 

Figure 6: Scrolling Packet Length over Time 
 

3.3.3.2 Packet Length Scrolling Plot 
This visualization is similar to that used in the Seesoft 
system.  Packet length is mapped to a variable length 
horizontal line. (figure 6)  The length of this line was 
calculated from the raw size of the Ethernet frame (in 
bytes) divided by the maximum allowable size of the 
frame according to the Ethernet protocol (1518 bytes).  
Each packet detected caused a new line to be 
calculated and drawn one pixel lower in the view 
window.  This had the effect of removing the aspect of 
time delay between packets from the display.  Similar 
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to the simple categorical scrolling plot described in 
3.3.3.1 color was mapped to the protocol type and 
direction of the traffic.  As network traffic caused the 
display to fill, the plot wrapped around to the top of 
the display window.  A horizontal marker line was 
used to indicate the current position.   

Figure 7: Incoming Destination Port over Time 

 

3.3.3.3 Incoming Port Scrolling Plot 
The final visualization we explored was designed to 
show the sequence of inbound destination ports over 
time. (figure 7)  The vertical axis is the port number 
and the horizontal axis is the arrival sequence of 
packets.  As each packet arrives a small marker is 
plotted according to its destination port number on the 
vertical axis.  Each subsequent packet is plotted one 
pixel to the right of its predecessor. When the current 
plotting position exceeds the rightmost display 
position the display wraps. A vertical white line is 
used to display the current position.  Marker colors are 
mapped to the protocol of the inbound packet (UDP or 
TCP).  

 

In summary, the following table shows the mapping of 
features to visualization. 

 

 

 

 

 
Port to 
Port IP to IP 

IP to Port 
to Port to 
IP 

Port to IP 
to IP to 
Port 

Categorical 
Scrolling  

Packet 
Length 
Scrolling 

Incoming 
Port 
Scrolling 

Internal Ports √√√√  √√√√ √√√√   √√√√ 

External Ports √√√√  √√√√ √√√√    

Internal IP  √√√√ √√√√ √√√√    

External IP  √√√√ √√√√ √√√√    

Protocol Type √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ 

Packet Direction √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ 

Packet Sequence     √√√√ √√√√ √√√√ 

Port Sequence       √√√√ 

Raw Packet Length      √√√√  

Cumulative Internal Ports  √√√√  √√√√ √√√√    

Cumulative External Ports √√√√  √√√√ √√√√    

Cumulative Internal IP  √√√√ √√√√ √√√√    

Cumulative External IP  √√√√ √√√√ √√√√    

Packet Arrival Sequence     √√√√ √√√√ √√√√ 

                              Figure 8:  Visualization vs. Feature Displayed 
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Figure 9: System Architecture 

 

3.4 System Overview 
 

We went through several iterations when developing 
our system including the use of existing packet capture 
tools such as tcpdump and snort piped to Perl to parse, 
process and graph the data in near-real time (figure 9, 
left column).  While reasonably effective, we found 
this technique was less suitable for real-time plotting 
and interaction.  Ultimately we used the winpcap 
library and Microsoft Visual Studio to directly access 
the packet capture library and build applications (figure 
9, right column).  This combination excelled at rapid 
GUI development and visualization construction 
without excess overhead.  While we could have used 
GTK+ or QT, we felt that we would make more rapid 
progress using a visual development environment and 
port our work to the Unix domain at a later stage.  Our 
final system captures packets and creates the 
visualizations in real time.  It supports both 
promiscuous and non-promiscuous mode packet 
capture.  Given that we wished to work towards an 
effective visual intrusion detection system we primarily 
relied upon passive, promiscuous mode packet capture 
feeling that this greatly reduces the chance of detection. 

4. RESULTS 

 
4.1 Experiments 
 

Our experiments were conducted in a networking 
laboratory and gathered data using the following 
scenarios:  baseline (“normal”) traffic, attacks using 

single tools without extraneous traffic and attacks 
using single tools with typical traffic.  Our intent was 
to test how well our candidate visualization techniques 
performed with and without the noise of routine 
traffic.  We plan further experiments that test less 
aggressive tools and multiple tools in parallel with and 
without routine traffic.  Beyond real-time analysis we 
wish to include the ability to examine interesting 
packet capture datasets such as from our university 
honeynet, the United States Service Academies’ Cyber 
Defense Exercise and the Root-Fu/Capture the Flag 
events conducted at hacker conventions. 

 

4.2 Attack Tools 
 

The system and visualization suite was tested with a 
range of popular network attack tools falling into two 
broad categories:  network reconnaissance and 
vulnerability assessment. The network reconnaissance 
class of tools typically allow ping sweeps, TCP/UDP 
port scans and operating systems detection. Many high 
quality tools of this class are freely available and 
widely used by attackers.  Network assessment tools 
probe target machines for known vulnerabilities.  To 
test the efficacy of our approach we utilized the tools 
and host operating systems listed in the following 
table. 

 

Tool Attacker OS 
nmap 3.0 Windows XP, Redhat 8 

nmap 3.5 Windows XP 

nmapwin 1.3.1 Windows XP 

Superscan 3.0 Windows XP 

Superscan 4.0 Windows XP 

scanline 1.01 Windows XP 

nessus 2.0.10 Redhat 8 

nikto 1.32 Windows XP 

sara 5.0.3 Redhat 8 
Figure 10:  Attack Tools Tested 
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Figure 11:  Attack Tools Fingerprints (External Port to Internal Port) 

 

4.3 Analysis 
 

To varying degrees, all the visualizations we tested 
proved effective in analyzing and fingerprinting attack 
tools.  In particular, the port-to-port parallel plot 
proved to be of significant value.  The images above 
(figure 11) dramatically show the differences and 
similarities between several tools run from both Linux 
and Windows XP operating systems.  UDP traffic is in 
orange and TCP traffic is in green.  Each fingerprint 
can be reliably reproduced with each subsequent use 
of the tool with only slight variations in the location of 
the attacker’s source ports.  The default target ports 
remain the same.  Some may argue that these tools are 
flexible and alternate ports may be chosen by the 
attacker.  In addition, some tools have publicly 
available source code and an attacker could create a 
heavily modified application and thus alter the 
fingerprint.  This is true, but naive use of default 

settings would indicate that the attacker might be of 
limited experience. Some tools do not have publicly 
available source code and offer only a limited set of 
functions. Another insight is that by knowing the 
attack tool in use, the network administrator can take 
appropriate action.  For example, if your web server 
was probed using the nikto vulnerability assessment 
tool (pictured above).  The system administrator might 
wish to do the same in order to be certain that the tool 
did not report any vulnerabilities.  We were surprised 
to find the striking similarity between scanline and 
SuperScan 4.0.  If you look closely you can see what 
appears to be the visual signature of scanline 
embedded in SuperScan.  While this view provides an 
excellent overview of network traffic it lacks the 
ability to zoom and filter as well as provide details on 
demand.  In our future work we will attempt to 
address these issues. 
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Figure 12:  In-Depth Look at Common nmap Options  
(External Port to External IP to Internal IP to Internal Port) 

 

The port-to-IP-to-IP-to-port views in Figure 12 
compare common modes of nmap 3.0.  The respective 
mode and command line switch is listed underneath 
each image.  After studying these images we noted 
several things.  This view is useful for normalizing the 
characteristic nmap fan because all attacks against the 
same IP address show the base of the fan at the same 
point.  Stealthy attacks that take advantage of   
weaknesses in the TCP protocol, such as the SYN 
scan, still need to send packets across the network and 
the signature is still visible.  While it is still possible 
to take advantage of different implementations of the 
TCP/IP stack to perform evasion or insertion attacks, 
the visualizations above show that some classes of 
stealth techniques can be detected.  Aspects of the 
underlying implementation and operating system show 
through as well.  If you consider the range of source 
ports used by each of the above you will see that there 
is a difference.  Nmap typically relies on raw sockets 
allowing the application to control virtually every 
aspect of packet construction.  The CONNECT scan 
above shows a wide range of source ports in use that 
we suspect is due to reliance upon the connect system 

call.  The ability to predict operating system source 
ports was recently proven to be a critical component 
of TCP reset attacks.  A weakness of the above 
visualization is the inability to detect subtle 
differences between most of the scans.  The FIN, 
NULL, XMAS, SYN and SYN with operating system 
fingerprinting all appear the same.  In future work we 
plan to develop visualizations that show the flags in 
use by TCP packets as we believe that this will show 
an attacker’s operating system fingerprinting attempts.   
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                      Figure 13:  scanline 1.01 
    (External Port to External IP to Internal IP to Internal Port) 

 

                    Figure 14:  Superscan 4.0  
     (External Port to External IP to Internal IP to Internal Port) 
 

Reliance upon the same code base may also be evident 
in some cases.  This evidence might prove useful with 
such tasks as quickly estimating if two malicious 
software applications were created by the same person 
or same malware toolkit.  Figure 13 shows the 
scanline 1.01 tool and figure 14 shows Superscan 4.0.  
Both tools were provided by the same company with 
scanline being made available some time before 
Superscan.  The port scanning fans are virtually 
identical, but the source port fan is dramatically 
different.  We suspect that Superscan was developed 
from the same base source code, but with the addition 
of multithreading.  We are unable to confirm this, as 
source code for these tools is not available.   

 

While it is possible to see the sequence of ports being 
scanned it is not a strength of our parallel plot views, 
but using the scrolling packet length and scrolling port 
views we were able to gain insight into the time 
variant nature of the tools.   

Figure 15:  Superscan 4.0 Detail 
(Scrolling Packet Length) 

 

We examined each of the tools using the scrolling 
packet length visualization and found that the 
technique was useful for determining the relative 
number of packets generated by each tool and the 
interleaving of protocol types and responses.  We also 
found distinct visual fingerprints associated with each 
tool.  These fingerprints often proved to be distinct 
even when interleaved with authorized traffic.  Figure 
15 shows a portion of a Superscan 4.0 scan. 
Additional images are omitted due to space 
constraints. 

 

Figure 16:  Superscan 3.0 Detail 
(Scrolling Internal Port) 
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Figure 17:  Superscan 4.0 Detail 
(Scrolling Internal Port) 

 

Figure 18: nmapwin 1.3.1 Detail 
(Scrolling Internal Port) 

 

The scrolling internal port visualization also provided 
interesting tool specific insights.  Figures 16 shows 
that Superscan 3.0 utilized sequential port selection.  
Figures 17 and 18 show that nmap and Superscan 4.0 
use a more random approach to target port selection.  
For future work we plan to examine other techniques 
that provide better insight into the timing of packet 
arrival.  Even when run from the same machine on an 
isolated network we noticed a marked difference in 
the speed with which each tool conducts its scan.  
Over longer distances across the network this would 
become noisier with additional network latency, but 
may still provide valuable insight. 

The next series of experiments involved the 
visualization of distributed attacks and very slow 
scans against the backdrop of legitimate traffic.  
Figure 19 (left image) shows the external port to 
internal port activity from 24 hours of legitimate, 
attack-free network usage on a small Windows XP 
network.  We tested the system with routine traffic 
(HTTP, SSH, FTP, SMTP) over the time period and 
found that a relatively stable picture developed.  The 
external port to internal port view proved to be 
particularly useful as the traffic was primarily from 
low client ports to low server ports.   

Figure 19: Routine Traffic (left) and Routine Traffic 
with Slow Scan (right) 

(External Port to Internal Port) 

 

Figure 19 (right image) shows a similar period of 
legitimate network usage, but includes an nmap scan.  
This scan was made using nmap’s slowest speed 
setting “paranoid.”  The scan clearly shows through 
the noise of routine traffic with only moderate 
occlusion.  Depending on the nature of routine traffic 
we believe this visualization technique will be very 
effective in detecting a variety of slow scans and other 
slow speed malicious activity.    We have conducted 
additional tests using university and home honeypots 
and found that it was particularly effective on these 
systems as virtually all honeypot activity is suspect.  
Other techniques, such as the external IP to internal IP 
visualization proved to be less useful for longer term 
and higher volume activity, although it might prove 
useful for analysis of distributed denial of service 
attacks, worm propagation or machine level network 
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mapping.  Over time, IP addresses filled much of the 
display space.  Our conclusion is that the port-to-port 
visualization will be useful for future research and the 
IP to IP visualization will be of only moderate value 
unless it is combined with interactive zoom & filter 
capability.  Our final experiment tested the efficacy of 
our system to detect distributed scans.  The external IP 
to internal port visualization proved to be most 
effective.  Figure 20 shows scanning activity from 
several attackers in the presence of legitimate activity. 

 
Figure 20: Distributed Scan with Routine Traffic 

(External IP to Internal Port) 

 

While we believe this visualization technique is 
effective against distributed scans, for maximum 
effect it must be combined with the ability to zoom 
and filter as well as provide details on demand. These 
additions will allow an analyst to better isolate the 
activities of malicious entities. 

5. CONCLUSIONS  
 

Our results demonstrated that popular attack tools of 
the network reconnaissance and vulnerability 
assessment classes can be readily detected by passive 
promiscuous mode sniffing and appropriate 

visualizations.  While some occlusion occurs, 
fingerprints are frequently visible despite the visual 
noise of routine traffic.  This is true even in the case of 
very slow scans occurring over a range of days to 
weeks.  One important concern is that some tools such 
as nmap are extremely flexible and that more advanced 
users can construct attacks that will frustrate naive 
visual analysis.  Further research in this area is required 
to counter these custom applications.  In addition to 
visual fingerprints, the source port allocation used by 
the attacker is likewise apparent.  While not foolproof, 
the allocation of ports can be an indication of the 
operating system in use by the attacker.  This 
knowledge can also be used to determine if a network 
protocol manipulation attack, such as the recent TCP 
reset attack, is underway.    Specific tool fingerprinting 
and operating system detection can be used to profile 
attacker activities, skill level and motivations.  This 
intelligence is vital for initiating appropriate responses 
and for law enforcement investigations.  Application 
specific features such as multi-threading and multiple 
processes is frequently apparent.  This information is 
useful in determining potential lineage between various 
attack tools.  Lightweight, persistent visualizations are 
useful against slow and distributed scans and are able 
to provide insightful overviews of network traffic, but 
can be fooled by occlusion and visualization specific 
countermeasures. More subtle attacks (e.g. zero-day 
attacks) and detailed forensics require more advanced 
overview and detail functionality combined with 
greater interactivity such as dynamic querying 
capability down to the individual packet content level, 
but doing so will require RAM or disk buffers.  These 
buffers will make such systems more susceptible to 
resource consumption attacks.  Additionally, due to the 
large datasets involved, effective scaling and labeling 
techniques must be used.  For future work we envision 
fingerprinting worm behavior and other well-known 
malicious network activity (e.g. spyware, trojans and 
warez servers), dual-use activities (e.g. FTP servers, 
Internet Relay Chat servers) as well as typically 
legitimate network activities (e.g. email, web 
browsing).  Our long-term goal is to create a library of 
visual signatures that can be used by the expert or 
novice analysts to detect malicious activity.   

 

Ultimately, we believe that visual intrusion detection 
systems can effectively supplement traditional 
signature and anomaly based intrusion detection 
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systems, but care must be taken avoid overwhelming 
the human operator.  To this end, the effectiveness of 
any tool is defined by its usability.  Careful task-driven 
usability studies that optimize ease of use and analyst 
intuition, will make visual intrusion detection systems 
more successful and drive down the skill barrier 
required for effective use. 
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