
Passive Visual Fingerprinting of Network Attack Tools

Gregory Conti and Kulsoom Abdullah

ABSTRACT

This paper examines the dramatic visual fingerprints
left by a wide variety of popular network attack tools in
order to better understand the specific methodologies
used by attackers as well as the identifiable
characteristics of the tools themselves. The techniques
used are entirely passive in nature and virtually
undetectable by the attackers. While much work has
been done on active and passive operating systems
detection, little has been done on fingerprinting the
specific tools used by attackers. This research explores
the application of several visualization techniques and
their usefulness toward identification of attack tools,
without the typical automated intrusion detection
system’s signatures and statistical anomalies. These
visualizations were tested using a wide range of
popular network security tools and the results show
that in many cases, the specific tool can be identified
and provides intuition that many classes of zero-day
attacks can be rapidly detected and analyzed using
similar techniques.

Categories and Subject Descriptors
H.5.2 [Information Systems]: Information Interfaces
and Presentation - User Interfaces

C.2.3 [Computer-Communication Networks]: Network
Operations: Network monitoring

C.2.0 [Computer-Communication Networks]: General
- Security and Protection

General Terms
Security

Keywords
network attack visualization, visual fingerprinting,
application fingerprinting, passive fingerprinting,
operating system fingerprinting, information
visualization

1. BACKGROUND AND MOTIVATION

Classical algorithmic intrusion detection systems (IDS)
rely upon machine-detected signatures and statistical
anomalies to discover intrusions. While great progress
has been made, there exists an unacceptable rate of
false positives and false negatives in such systems. By
allowing the network analyst to continually observe
network traffic in a highly efficient manner, analysts
develop an intuitive feel for the usually legitimate and
sometimes anomalous activities on their network in a
way that augments more traditional systems. False
positives and false negatives become of an entirely
different character. For example, an anomaly-based
intrusion detection system may be slowly trained over
time to overlook malicious activity and a signature-
based intrusion detection system generally will not
detect new attacks unless they exist in its signature
database. While it is still possible to fool a network
analyst or system administrator, we argue that properly
designed visualizations enhance the capabilities of the
human in such a way that greatly complicates the
efforts of an attacker.

Figure 1: Mutually Supporting Capabilities of

Intrusion Detection Systems

A human will inherently detect different signatures and
different anomalies. Historically, such fields as
machine vision and machine learning have shown that

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
VizSEC/DMSEC ’04, October 29, 2004, Fairfax, VA, USA.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

 2

the tasks in which a machine stands out are typically
entirely different from those in which humans excel.
This is a strong argument for research into visual
intrusion detection. A would-be intruder must fool both
the human and the machine. Figure 1. illustrates the
mutually supporting capabilities of these
complementary intrusion detection systems. The
shaded area is the increased coverage provided by a
visual intrusion detection system. We believe that
classical intrusion detection systems working
symbiotically with a visualization-enhanced human will
outperform algorithmic systems operating alone. By
bringing humans more directly into the intrusion
detection loop, correct visualizations can tap into the
high bandwidth visual recognition capabilities of the
human cognitive system and help address the serious
problem of false positives and false negatives that
exists today. As experienced amateur radio operators
can immediately identify digital signals based upon
their audio characteristics, so can human analysts
visually identify network attacks even if they do not
exactly match the precise signatures or statistical
anomalies of past attacks. For a visual intrusion
detection system to be effective it must focus on tasks
that cannot be easily performed by an automated
system. Section 3.1 lists the subset of these tasks we
focused on for this work.

In this paper we argue the following benefits of
visualization:

• Specific attack tools, and to a lesser-degree
their host operating system, can be passively
identified by their visual signature. This aids
law enforcement forensics, provides insight
into an attacker’s methodology and experience
level and helps allow the network defender to
initiate appropriate responses.

• Some stealthy attacks are resistant to detection
by traditional intrusion detection systems, but
are readily visible using appropriate
visualizations.

• Visualization techniques can be used that
require little state and are remarkably resistant
to overload caused by high volume network
traffic and resource consumption attacks that
can incapacitate traditional intrusion detection
systems. The lightweight, fixed memory
requirements of some of these visualizations

allow visual intrusion detection systems to
operate for long periods of time.

• With appropriate visualizations of network
traffic there is no such thing as a false positive
or false negative as typically defined in the
classical intrusion detection system domain.
Human operators can still be fooled, but the
character of human decision-making is entirely
different from that of machines. Consider the
problems encountered when attempting to filter
spam. A human can immediately identify most
spam, where computer algorithms provide only
limited detection. This diversity provides
overlapping capabilities that, when combined,
provide greater effectiveness than an IDS or
human operating alone.

• By their very nature, most zero-day (never seen
before) attacks do not match existing intrusion
signatures. Visualization techniques can
provide clues to impending attacks and
facilitate quick response analysis. For
example, the scanning of a newly released
worm would be readily apparent.

• Distributed scanning and slow scanning (hours-
weeks) can be effectively detected.

• While legitimate network traffic can cloud the
visual intrusion detection environment of a
given network, many attacks are still readily
apparent through the noise.

The goal of this paper is to explore and defend these
claims as well as systematically examine the strengths
and weaknesses of several visualization techniques as
they are applied to network intrusion detection.

Section 2 examines the current state of the art in this
area. Section 3 explores the task-driven development
of candidate visualizations and their usefulness toward
analysis of attack tools. Section 4 describes the results
from a series of controlled laboratory experiments.
Section 5 presents our conclusions and directions for
future research.

 3

2. RELATED WORK

The primary contributions of this work include the
demonstration of the efficacy of fingerprinting common
attack tools, the ability to provide rapid insight into the
attacker’s operating system type and the possible
lineage of the code in use, the ability to detect some
classes of stealthy attacks and the ability to detect slow
scans despite the visual noise of legitimate traffic.
Related work falls into several main areas including
current network security visualization research as well
as application and operating systems fingerprinting.
While network visualization and intrusion detection are
relatively mature areas, there is a limited body of work
covering network security visualization.
Representative recent research includes analysis of the
stability of Internet routing[1,2], analysis of stepping
stone pairs[3], monitoring the security status of large
networks[4], mapping of the Internet[5,6], application
of statistical methods for intrusion detection[7],
intruder behavior characterization[8], worm
propagation[9], rapid prototyping[10], TCP/IP
sequence number generation[11,12], haptic integration
[13] and the construction of a toolkit for visual
intrusion detection[14]. Availability of security-centric
commercial and open source/free visualization systems
is likewise limited. Representative examples include:
SecureScope[15], StealthWatch + Therminator [16],
Ethereal[17], Etherape[18], Netstumbler[19],
3DTraceroute[20] and XTraceroute[21].

3. NETWORK SECURITY VISUALIZATION
PROCESS

We chose a comprehensive approach to visualize
network attacks that included consideration of all TCP,
UDP, IP and Ethernet header fields as well as many
features that can be derived from this data. After
examining the data available, we considered a broad
range of visualization techniques from classic
information visualization literature and current research
in network security visualization. Finally, we
examined a variety of network attack tools from the
Top 75 Network Security Tool List produced by
fyodor, the creator of nmap [22]. This list was
constructed based on a May 2003 survey of nmap
developers. From this consideration of data,
visualization techniques and security tools we

constructed a series of experiments to test the
hypothesis that these tools could be effectively
fingerprinted. We understand that a proficient attacker
can evade many of these techniques, primarily due to
lack of authentication in today’s network protocols, but
feel that they remain some of the most effective
techniques at present. Such is the case with much of
the information security field, for now and into the
foreseeable future it will likely continue to be an on
going battle of one-upmanship.

3.1 Task Analysis

Specifically, we wished to design visualizations that
would effectively visualize passively captured packets
in real time in order to accomplish the following goals:

• fingerprint popular attack tools

• provide insight into the attacker’s operating
system

• detect stealthy attacks (TCP evasion
techniques in particular)

• provide insight into future zero-day attack
detection systems

• detect slow scans

• detect distributed scans

• detect attacks despite the visual noise of
legitimate traffic

• supplement traditional signature and anomaly
based intrusion detection systems so as to
reduce the overall number of false positives
and false negatives.

The degree to which we were able to achieve each of
these goals is discussed in the results section.

3.2 Exploration of Available Data

3.2.1 Direct Data
Passive sniffing tools such as tcpdump[23] and
snort[24] make available all of the header information
contained in packets as they traverse an Ethernet
collision domain. To constrain the problem, we limited
our consideration to the most common protocols:
Ethernet, TCP, IP and UDP, believing these would

 4

provide representative insights that could generally be
applied to other protocols. The packet formats of these
protocols are well documented. By carefully
considering the relevancy of the direct data available
and the applications to be analyzed it is possible to
construct candidate visualizations. As a simple
example, if one is attempting to fingerprint a simple
port scanning program it is useful to visualize the
source IP, destination IP, source TCP port, source UDP
port, destination TCP port and destination UDP port.
In addition, the ability to analyze attack tools using
direct data from a sniffing program is enhanced by the
use of feature construction. Feature construction is
discussed in section 3.2.2.

3.2.1.1 Link Layer (Ethernet)
Link layer headers are typically created by the node
one link distant from the receiving node. For this
information to be compromised a nearby node must
also have been compromised. Link layer information is
particularly useful for detecting anomalous behavior
initiated on a local network segment: for example, to
detect 802.11b wireless network abuse, address
resolution (ARP) spoofing and attempts to sniff across
collision domains in a switched network (e.g. switch
flooding, ARP redirects and MAC address spoofing).
For purposes of this paper we chose to consider source
MAC address, destination MAC address and the
overall length (in bytes) of the Ethernet frame.

3.2.1.2 Network Layer (IP)
Network layer packets are used for host-to-host
communication across the Internet and have been
subject to much abuse by malicious entities. While we
chose to focus our visualizations on the source and
destination IP address fields there are many areas for
future work. Of particular interest are the time to live
(TTL) field and the fragmentation offset which can be
used for such activities as detecting Honeynets[25] and
insertion and evasion attacks to bypass intrusion
detection systems[26].

3.2.1.3 Transport Layer (TCP and UDP)
Transport layer protocols provide process-to-process
connectivity across the Internet. Both TCP and UDP
use the notion of ports to support this connectivity.
Due to the fact that ports are fundamental to Internet

connectivity and that many attack tools probe these
ports in an attempt to discover vulnerabilities we chose
to include the source and destination ports for TCP and
UDP for our visualizations. For future work we leave
the visual examination of TCP sequence numbers and
flags.

3.2.1.4 Application Layer
Application layer headers and data provide a great deal
of information about the nature of attacks, but due to
the wide variety of application layer protocols we
chose to limit our visualization research to raw hex and
printable ASCII decodes of this data. There is a great
deal of research potential in the visual examination of
application layer data. As an example, many zero-day
network-based buffer overflow attacks will likely have
distinct visual signatures.

3.2.2 Feature Construction
Feature construction allows one to add new attributes
to the packet capture dataset constructed based upon
the captured data as well as information from the
network security domain[27]. We chose the following
candidate features as useful for visualization:

• Cumulative source and destination ports (by
protocol) used for a given period.

• Cumulative source and destination IP addresses
(by transport protocol) used for a given period.

• Sequence of packets and ports (by transport
protocol and length) used during a given
period.

• The notion of home network and external
network. This allows the analyst to define the
locality of their services and packets. This also
facilitates graphing that is relative to internal
and external networks and is similar to what is
seen in Snort configuration [28].

While we chose just the subset of possible features
listed above, for future work we would like to consider
other possibilities. The literature of intrusion detection
has a rich body of work to draw upon when considering
visual network intrusion detection [29]. Generalizing
the feature construction survey by Brugger [30]
potential candidates include visualization of the time
variant nature of network traffic (e.g. duration of

 5

connections & services, timestamp of packets),
conformance to protocols, IP and TCP flag usage,
number and type of packets/protocols, number and type
of connections, number of resent and duplicate packets,
amount of fragmentation, services available/used and
errors encountered. To this list we would add the
following features as potentially interesting candidates
for visualization: stated checksum vs. actual checksum
(for each layer), stated length vs. actual length (for each
layer), transformation from time domain to frequency
domain (using Fourier transforms), time between
packets, probable operating system, additional IDS
evasion techniques (dropped packets, packet overlap,
out of order packets, known malformed packet types
[31]) and the likelihood of human vs. machine
operation based on packet timing. Finally we believe
the use of composite variables and the general
application of the following statistical measures will
prove useful: duration, frequency, quantity, ratios,
percentages, deviation from independence, influence,
standard deviation, variance, average, mean, median
and mode.

Figure 2: External IP to Internal IP (left), External IP to
Internal Port (center) and External Port to Internal Port

(right) Parallel Coordinate Plots

3.3 Visualizations

3.3.1 Introduction
There are a wide variety of potential visualizations
that can be used to display network traffic data in a
way that is meaningful for security analysis. The
comprehensive surveys by Tufte [32,33,34] and
Spence [35] cover classical information visualization
techniques in detail and are very useful for inspiration.
From this range, we selected the parallel coordinate

plot [36,37,38] for its strength in showing
relationships within hypervariate datasets as well as its
proven usefulness in the intrusion detection domain
[39]. We also selected a technique similar to that used
in the Seesoft system to help illuminate the time
variant aspect of the network traffic [40].

Figure 3: External IP to External Port to Internal Port to
Internal IP Parallel Coordinate Plot

Figure 4: External Port to External IP to Internal IP to
Internal IP Parallel Coordinate Plot

3.3.2 Parallel Coordinate Plots
For parallel coordinate visualizations, we limited our
variables to: source IP, destination IP, source port,
destination port and protocol type (TCP or UDP,
inbound or outbound from home network). The
parallel coordinate plots below extend previous work in
the VisFlowConnect system[4] by applying additional
dimensionality, alternative encoding techniques, real-
time packet capture and focused attack tool specific

 6

data. We used parallel coordinate plots of the
hypervariate data in the following combinations:

• External IP to Internal IP (figure 2, left)

• External IP to Internal Port (figure 2, center)

• External Port to Internal Port (figure 2, right)

• External IP to External Port to Internal Port to
Internal IP (figure 3)

• External Port to External IP to Internal IP to
Internal Port (figure 4)

Ports and IP addresses are plotted on a continuous
scale. Alternatively we could have chosen to treat
those fields as categorical or ordinal data by allocating
space to only those data points encountered in the real-
time network traffic. This proved to be in conflict
with our design goal of a lightweight system as a buffer
and significant screen redrawing would be required.
Ultimately we chose the continuous scale in an attempt
to provide an effective overview of network activities
and allow the technique to scale to very large networks.
The advantage is that the entire 32-bit IP address space
can be viewed at a glance. We understand that this
comes at the cost of coarser resolution. Future systems
will incorporate improved zoom, filter and details-on-
demand capabilities to complement this technique.
Color is mapped to the protocol in use as well as the
direction (to/from home network). The left side of the
plot is considered to be the external network and the
right side is considered to be the home network (as
defined by the network analyst)

3.3.3 Scrolling Packet Plots
We chose two variants of a scrolling visualization to
provide insight into the time-variant nature of the
network traffic. While our parallel coordinate plots
were designed to show the overall relationships
between source and destination IP addresses and
TCP/UDP ports we wished to create visualizations
that would better show a running sequence of packet
data as they arrived at our observation point.

Figure 5: Scrolling Protocol Type over Time

3.3.3.1 Simple Categorical Scrolling Plot
The first plot mapped packet protocol type
(TCP/UDP) and direction (inbound/outbound from the
home network) to specific colors and vertical
locations on the screen. (figure 5) As each packet was
captured it was plotted as a small vertical line, one
pixel wide, on the graph. Its position on the horizontal
axis was incremented (to the right) by one pixel with
each packet. When network traffic caused the plot to
move to the extreme right it wrapped around,
beginning at the extreme left. A vertical marker line
spanning the entire plot window was used to indicate
current position. This marker was placed one position
ahead of the current plot.

Figure 6: Scrolling Packet Length over Time

3.3.3.2 Packet Length Scrolling Plot
This visualization is similar to that used in the Seesoft
system. Packet length is mapped to a variable length
horizontal line. (figure 6) The length of this line was
calculated from the raw size of the Ethernet frame (in
bytes) divided by the maximum allowable size of the
frame according to the Ethernet protocol (1518 bytes).
Each packet detected caused a new line to be
calculated and drawn one pixel lower in the view
window. This had the effect of removing the aspect of
time delay between packets from the display. Similar

 7

to the simple categorical scrolling plot described in
3.3.3.1 color was mapped to the protocol type and
direction of the traffic. As network traffic caused the
display to fill, the plot wrapped around to the top of
the display window. A horizontal marker line was
used to indicate the current position.

Figure 7: Incoming Destination Port over Time

3.3.3.3 Incoming Port Scrolling Plot
The final visualization we explored was designed to
show the sequence of inbound destination ports over
time. (figure 7) The vertical axis is the port number
and the horizontal axis is the arrival sequence of
packets. As each packet arrives a small marker is
plotted according to its destination port number on the
vertical axis. Each subsequent packet is plotted one
pixel to the right of its predecessor. When the current
plotting position exceeds the rightmost display
position the display wraps. A vertical white line is
used to display the current position. Marker colors are
mapped to the protocol of the inbound packet (UDP or
TCP).

In summary, the following table shows the mapping of
features to visualization.

Port to
Port IP to IP

IP to Port
to Port to
IP

Port to IP
to IP to
Port

Categorical
Scrolling

Packet
Length
Scrolling

Incoming
Port
Scrolling

Internal Ports √√√√ √√√√ √√√√ √√√√

External Ports √√√√ √√√√ √√√√

Internal IP √√√√ √√√√ √√√√

External IP √√√√ √√√√ √√√√

Protocol Type √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√

Packet Direction √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√

Packet Sequence √√√√ √√√√ √√√√

Port Sequence √√√√

Raw Packet Length √√√√

Cumulative Internal Ports √√√√ √√√√ √√√√

Cumulative External Ports √√√√ √√√√ √√√√

Cumulative Internal IP √√√√ √√√√ √√√√

Cumulative External IP √√√√ √√√√ √√√√

Packet Arrival Sequence √√√√ √√√√ √√√√

 Figure 8: Visualization vs. Feature Displayed

 8

Figure 9: System Architecture

3.4 System Overview

We went through several iterations when developing
our system including the use of existing packet capture
tools such as tcpdump and snort piped to Perl to parse,
process and graph the data in near-real time (figure 9,
left column). While reasonably effective, we found
this technique was less suitable for real-time plotting
and interaction. Ultimately we used the winpcap
library and Microsoft Visual Studio to directly access
the packet capture library and build applications (figure
9, right column). This combination excelled at rapid
GUI development and visualization construction
without excess overhead. While we could have used
GTK+ or QT, we felt that we would make more rapid
progress using a visual development environment and
port our work to the Unix domain at a later stage. Our
final system captures packets and creates the
visualizations in real time. It supports both
promiscuous and non-promiscuous mode packet
capture. Given that we wished to work towards an
effective visual intrusion detection system we primarily
relied upon passive, promiscuous mode packet capture
feeling that this greatly reduces the chance of detection.

4. RESULTS

4.1 Experiments

Our experiments were conducted in a networking
laboratory and gathered data using the following
scenarios: baseline (“normal”) traffic, attacks using

single tools without extraneous traffic and attacks
using single tools with typical traffic. Our intent was
to test how well our candidate visualization techniques
performed with and without the noise of routine
traffic. We plan further experiments that test less
aggressive tools and multiple tools in parallel with and
without routine traffic. Beyond real-time analysis we
wish to include the ability to examine interesting
packet capture datasets such as from our university
honeynet, the United States Service Academies’ Cyber
Defense Exercise and the Root-Fu/Capture the Flag
events conducted at hacker conventions.

4.2 Attack Tools

The system and visualization suite was tested with a
range of popular network attack tools falling into two
broad categories: network reconnaissance and
vulnerability assessment. The network reconnaissance
class of tools typically allow ping sweeps, TCP/UDP
port scans and operating systems detection. Many high
quality tools of this class are freely available and
widely used by attackers. Network assessment tools
probe target machines for known vulnerabilities. To
test the efficacy of our approach we utilized the tools
and host operating systems listed in the following
table.

Tool Attacker OS
nmap 3.0 Windows XP, Redhat 8

nmap 3.5 Windows XP

nmapwin 1.3.1 Windows XP

Superscan 3.0 Windows XP

Superscan 4.0 Windows XP

scanline 1.01 Windows XP

nessus 2.0.10 Redhat 8

nikto 1.32 Windows XP

sara 5.0.3 Redhat 8
Figure 10: Attack Tools Tested

 9

Figure 11: Attack Tools Fingerprints (External Port to Internal Port)

4.3 Analysis

To varying degrees, all the visualizations we tested
proved effective in analyzing and fingerprinting attack
tools. In particular, the port-to-port parallel plot
proved to be of significant value. The images above
(figure 11) dramatically show the differences and
similarities between several tools run from both Linux
and Windows XP operating systems. UDP traffic is in
orange and TCP traffic is in green. Each fingerprint
can be reliably reproduced with each subsequent use
of the tool with only slight variations in the location of
the attacker’s source ports. The default target ports
remain the same. Some may argue that these tools are
flexible and alternate ports may be chosen by the
attacker. In addition, some tools have publicly
available source code and an attacker could create a
heavily modified application and thus alter the
fingerprint. This is true, but naive use of default

settings would indicate that the attacker might be of
limited experience. Some tools do not have publicly
available source code and offer only a limited set of
functions. Another insight is that by knowing the
attack tool in use, the network administrator can take
appropriate action. For example, if your web server
was probed using the nikto vulnerability assessment
tool (pictured above). The system administrator might
wish to do the same in order to be certain that the tool
did not report any vulnerabilities. We were surprised
to find the striking similarity between scanline and
SuperScan 4.0. If you look closely you can see what
appears to be the visual signature of scanline
embedded in SuperScan. While this view provides an
excellent overview of network traffic it lacks the
ability to zoom and filter as well as provide details on
demand. In our future work we will attempt to
address these issues.

 10

Figure 12: In-Depth Look at Common nmap Options
(External Port to External IP to Internal IP to Internal Port)

The port-to-IP-to-IP-to-port views in Figure 12
compare common modes of nmap 3.0. The respective
mode and command line switch is listed underneath
each image. After studying these images we noted
several things. This view is useful for normalizing the
characteristic nmap fan because all attacks against the
same IP address show the base of the fan at the same
point. Stealthy attacks that take advantage of
weaknesses in the TCP protocol, such as the SYN
scan, still need to send packets across the network and
the signature is still visible. While it is still possible
to take advantage of different implementations of the
TCP/IP stack to perform evasion or insertion attacks,
the visualizations above show that some classes of
stealth techniques can be detected. Aspects of the
underlying implementation and operating system show
through as well. If you consider the range of source
ports used by each of the above you will see that there
is a difference. Nmap typically relies on raw sockets
allowing the application to control virtually every
aspect of packet construction. The CONNECT scan
above shows a wide range of source ports in use that
we suspect is due to reliance upon the connect system

call. The ability to predict operating system source
ports was recently proven to be a critical component
of TCP reset attacks. A weakness of the above
visualization is the inability to detect subtle
differences between most of the scans. The FIN,
NULL, XMAS, SYN and SYN with operating system
fingerprinting all appear the same. In future work we
plan to develop visualizations that show the flags in
use by TCP packets as we believe that this will show
an attacker’s operating system fingerprinting attempts.

 11

 Figure 13: scanline 1.01
 (External Port to External IP to Internal IP to Internal Port)

 Figure 14: Superscan 4.0
 (External Port to External IP to Internal IP to Internal Port)

Reliance upon the same code base may also be evident
in some cases. This evidence might prove useful with
such tasks as quickly estimating if two malicious
software applications were created by the same person
or same malware toolkit. Figure 13 shows the
scanline 1.01 tool and figure 14 shows Superscan 4.0.
Both tools were provided by the same company with
scanline being made available some time before
Superscan. The port scanning fans are virtually
identical, but the source port fan is dramatically
different. We suspect that Superscan was developed
from the same base source code, but with the addition
of multithreading. We are unable to confirm this, as
source code for these tools is not available.

While it is possible to see the sequence of ports being
scanned it is not a strength of our parallel plot views,
but using the scrolling packet length and scrolling port
views we were able to gain insight into the time
variant nature of the tools.

Figure 15: Superscan 4.0 Detail
(Scrolling Packet Length)

We examined each of the tools using the scrolling
packet length visualization and found that the
technique was useful for determining the relative
number of packets generated by each tool and the
interleaving of protocol types and responses. We also
found distinct visual fingerprints associated with each
tool. These fingerprints often proved to be distinct
even when interleaved with authorized traffic. Figure
15 shows a portion of a Superscan 4.0 scan.
Additional images are omitted due to space
constraints.

Figure 16: Superscan 3.0 Detail
(Scrolling Internal Port)

 12

Figure 17: Superscan 4.0 Detail
(Scrolling Internal Port)

Figure 18: nmapwin 1.3.1 Detail
(Scrolling Internal Port)

The scrolling internal port visualization also provided
interesting tool specific insights. Figures 16 shows
that Superscan 3.0 utilized sequential port selection.
Figures 17 and 18 show that nmap and Superscan 4.0
use a more random approach to target port selection.
For future work we plan to examine other techniques
that provide better insight into the timing of packet
arrival. Even when run from the same machine on an
isolated network we noticed a marked difference in
the speed with which each tool conducts its scan.
Over longer distances across the network this would
become noisier with additional network latency, but
may still provide valuable insight.

The next series of experiments involved the
visualization of distributed attacks and very slow
scans against the backdrop of legitimate traffic.
Figure 19 (left image) shows the external port to
internal port activity from 24 hours of legitimate,
attack-free network usage on a small Windows XP
network. We tested the system with routine traffic
(HTTP, SSH, FTP, SMTP) over the time period and
found that a relatively stable picture developed. The
external port to internal port view proved to be
particularly useful as the traffic was primarily from
low client ports to low server ports.

Figure 19: Routine Traffic (left) and Routine Traffic
with Slow Scan (right)

(External Port to Internal Port)

Figure 19 (right image) shows a similar period of
legitimate network usage, but includes an nmap scan.
This scan was made using nmap’s slowest speed
setting “paranoid.” The scan clearly shows through
the noise of routine traffic with only moderate
occlusion. Depending on the nature of routine traffic
we believe this visualization technique will be very
effective in detecting a variety of slow scans and other
slow speed malicious activity. We have conducted
additional tests using university and home honeypots
and found that it was particularly effective on these
systems as virtually all honeypot activity is suspect.
Other techniques, such as the external IP to internal IP
visualization proved to be less useful for longer term
and higher volume activity, although it might prove
useful for analysis of distributed denial of service
attacks, worm propagation or machine level network

 13

mapping. Over time, IP addresses filled much of the
display space. Our conclusion is that the port-to-port
visualization will be useful for future research and the
IP to IP visualization will be of only moderate value
unless it is combined with interactive zoom & filter
capability. Our final experiment tested the efficacy of
our system to detect distributed scans. The external IP
to internal port visualization proved to be most
effective. Figure 20 shows scanning activity from
several attackers in the presence of legitimate activity.

Figure 20: Distributed Scan with Routine Traffic

(External IP to Internal Port)

While we believe this visualization technique is
effective against distributed scans, for maximum
effect it must be combined with the ability to zoom
and filter as well as provide details on demand. These
additions will allow an analyst to better isolate the
activities of malicious entities.

5. CONCLUSIONS

Our results demonstrated that popular attack tools of
the network reconnaissance and vulnerability
assessment classes can be readily detected by passive
promiscuous mode sniffing and appropriate

visualizations. While some occlusion occurs,
fingerprints are frequently visible despite the visual
noise of routine traffic. This is true even in the case of
very slow scans occurring over a range of days to
weeks. One important concern is that some tools such
as nmap are extremely flexible and that more advanced
users can construct attacks that will frustrate naive
visual analysis. Further research in this area is required
to counter these custom applications. In addition to
visual fingerprints, the source port allocation used by
the attacker is likewise apparent. While not foolproof,
the allocation of ports can be an indication of the
operating system in use by the attacker. This
knowledge can also be used to determine if a network
protocol manipulation attack, such as the recent TCP
reset attack, is underway. Specific tool fingerprinting
and operating system detection can be used to profile
attacker activities, skill level and motivations. This
intelligence is vital for initiating appropriate responses
and for law enforcement investigations. Application
specific features such as multi-threading and multiple
processes is frequently apparent. This information is
useful in determining potential lineage between various
attack tools. Lightweight, persistent visualizations are
useful against slow and distributed scans and are able
to provide insightful overviews of network traffic, but
can be fooled by occlusion and visualization specific
countermeasures. More subtle attacks (e.g. zero-day
attacks) and detailed forensics require more advanced
overview and detail functionality combined with
greater interactivity such as dynamic querying
capability down to the individual packet content level,
but doing so will require RAM or disk buffers. These
buffers will make such systems more susceptible to
resource consumption attacks. Additionally, due to the
large datasets involved, effective scaling and labeling
techniques must be used. For future work we envision
fingerprinting worm behavior and other well-known
malicious network activity (e.g. spyware, trojans and
warez servers), dual-use activities (e.g. FTP servers,
Internet Relay Chat servers) as well as typically
legitimate network activities (e.g. email, web
browsing). Our long-term goal is to create a library of
visual signatures that can be used by the expert or
novice analysts to detect malicious activity.

Ultimately, we believe that visual intrusion detection
systems can effectively supplement traditional
signature and anomaly based intrusion detection

 14

systems, but care must be taken avoid overwhelming
the human operator. To this end, the effectiveness of
any tool is defined by its usability. Careful task-driven
usability studies that optimize ease of use and analyst
intuition, will make visual intrusion detection systems
more successful and drive down the skill barrier
required for effective use.

6. ACKNOWLEDGMENTS

Dr. Wenke Lee, Dr. John Stasko, Dr. Henry Owen, Dr.
John Levine, Julian Grizzard, Chris Lee, Byung-Uk
Roho and Jinsuk Jun of the Georgia Institute of
Technology as well as many members of the Atlanta
2600 chapter provided invaluable insight in support of
this research. Dr. Robert Spence and Dr. Edward
Tufte’s excellent books on information visualization
were used throughout this research for their thoughtful
surveys of the field and insightful analysis.

7. REFERENCES

1 Teoh, S; Ma, K; Wu, F and Zhao, X. Case Study:
Interactive Visualization for Internet Security,
Proceedings of IEEE Information Visualization,
2002.

2 Teoh, S; Ma, K and Wu, F. A Visual Exploration
Process for the Analysis of Internet Routing Data,
Proceedings of IEEE Information Visualization,
2003.

3 Teoh, S. Graphical Presentation of Stepping-Stone
Pairs Found. Initial Results.
http://graphics.cs.ucdavis.edu/ ~steoh/
research/tcpdump/tcpdump.html, last accessed April
2004.

4 Security Incident Fusion Tool, National Center for
Advanced Secure Systems Research Group.
http://www.ncassr.org/projects/sift/papers/, last
accessed April 2004.

5 Cheswick, B and Burch, H. The Internet Mapping
Project. http://research.lumeta.com/ches/map/, last
accessed April 2004.

6 An Atlas of Cyberspaces.
http://www.cybergeography.org/atlas/atlas.html, last
accessed April 2004.

7 Marchette, D. Computer Intrusion Detection and
Network Monitoring: A Statistical Viewpoint,
Springer, 2001.

8 Erbacher, R and Frincke, D. Visual Behavior
Characterization for Intrusion and Misuse Detection.
Proceedings of the SPIE '2001 Conference on
Visual Data Exploration and Analysis VIII, CA,
January 2001, pp. 210-218.

9 Code Red Worm Infections. Cooperative
Association for Internet Data Analysis (CAIDA)
http://www.caida.org/tools/visualization/walrus/exa
mples/codered/.

10 Juslin, J. Intrusion Detection and Visualization
Using Perl. O'Reilly Open Source Conference 2001,
San Diego, California, U.S.A., 23rd - 29th of July
2001.

11 Zalewski, M. Strange Attractors and TCP/IP
Sequence Number Analysis.
http://razor.bindview.com/publish/papers/tcpseq.htm
l, last accessed April 2004.

12 Zalewski, M. Strange Attractors and TCP/IP
Sequence Number Analysis - One Year Later.
http://lcamtuf.coredump.cx/newtcp/, last accessed
April 2004.

13 Nyarko, K; Capers, T; Scott, C and Ladeji-Osias,
K. Network Intrusion Visualization with NIVA, an
Intrusion Detection Visual Analyzer with Haptic
Integration. 10th Symposium on Haptic Interfaces
for Virtual Environment and Teleoperator Systems.
March 24 - 25, 2002. Orlando, Florida, p. 277.

14 Goodall, J. Information Visualization for Intrusion
Detection. The Intrusion Detection Tool Kit (IDtk).
http://userpages.umbc.edu/~jgood/idtk.php, last
accessed April 2004.

15 SecureScope. Secure Decisions.
http://www.securedecisions.com/, last accessed
April 2004.

16 StealthWatch + Therminator. Lancope
Corporation. http://www.stealthwatch.com/, last
accessed April 2004.

17 Ethereal: A Network Protocol Analyzer.
http://www.ethereal.com/, last accessed April 2004.

 15

18 Etherape: A Graphical Network Monitor.
http://etherape.sourceforge.net/, last accessed April
2004.

19 NetStumbler Homepage,
http://www.netstumbler.com/, last accessed April
2004.

20 3D Traceroute Homepage,
http://www.hlembke.de/prod/3dtraceroute/, last
accessed April 2004.

21 The Xtraceroute Homepage.
http://www.dtek.chalmers.se/~d3august/xt/, last
accessed April 2004.

22 Fydor, “Top 75 Network Security Tools,”
http://www.insecure.org/tools.html, last accessed
March 2004.

23 TCPDUMP Public Repository,
http://www.tcpdump.org/, last accessed March
2004.

24 Snort Project Page. http://www.snort.org/, last
accessed March 2004.

25 The Honeynet Project. http://project.honeynet.org/,
last acccessed April 2004.

26 Ptacek, T and Newsham, T. Insertion, Evasion, and
Denial of Service: Eluding Network Intrusion
Detection. Secure Networks, Inc. January, 1998.
http://www.insecure.org/stf/secnet_ids/secnet_ids.h
tml, last accessed April 2004.

27 Feature Construction. University of Dortmund.
http://kiew.cs.uni-dortmund.de:8001/mlnet/
instances/7f000002e50a928a37 last accessed
March 2004.

28 Packet Logger Mode, Online Snort Manual.
http://www.snort.org/docs/snort_manual/node5.htm
l, last accessed April 2004.

29 Lee, Wenke and Stolfo, Sal. “A Framework for
Constructing Features and Models for Intrusion
Detection Systems,” ACM Transactions on
Information and System Security, Volume 3,
Number 4 (November 2000).

30 Brugger, Terry. Data Mining for Network
Intrusion Detection. PhD Dissertation draft.
Unpublished as of March 2004. University of
California - Davis.

31 Zalewski, Michal. Museum of Broken Packets.
http://lcamtuf.coredump.cx/mobp/. Last accessed
March 2004.

32 Tufte, E. The Visual Display of Quantitative
Information. Second Edition. Graphics Press, May
2001.

33 Tufte, E. Visual Explanations: Images and
Quantities, Evidence and Narrative. Graphics
Press, February 1997.

34 Tufte, E. Envisioning Information. Graphics
Press, May 1990.

35 Spence, R. Information Visualization. Pearson
Addison Wesley, December 2000.

36 Inselberg, A. Multidimensional Detective. IEEE
Proceedings of Information Visualization ‘97, pp.
100-107.

37 Inselberg, A. The Plane with Parallel Coordinates,
The Visual Computer, 1, pp. 100-107.

38 Wegman, E. Hyperdimensional Data Analysis
Using Parallel Coordinates. Journal of the
American Statistical Association, 85:411, pp. 664-
675.

39 Marchette, D. Computer Intrusion Detection and
Network Monitoring: A Statistical Viewpoint.
Springer Verlag, July 2001.

40 Eick, S; Steffen, J and Sumner, E. Seesoft - A Tool
for Visualizing Line Oriented Software Statistics.
IEEE Transactions on Software Engineering, 18,
11, November 1992, pp. 957-968.

The views expressed in this article are those of the
authors and do not reflect the official policy or
position of the United States Military Academy, the
Department of the Army, the Department of Defense
or the U.S. Government.

