Visualizing Network Data for Intrusion Detection

Kulsoom Abdullah, Chris Lee, Gregory Conti, John A. Copeland June 16, 2005

Motivation/Background

 Network traffic capacity is greater than systems can process.

Motivation

Related Work

Network

System

Data

)esign

Threat Models

& Future

onclusior

- Network attacks have not decreased, current security tools are insufficient.
 - Network attacks can be characterized by ports activity.
- Information visualization helps to provide insights and understands in datasets vs. just text alone.
- We want to provide an overview with details on demand.

Related Work

FlowScan

Motivation

Related Work

Network

System

Threat

Conclusion

& Future

Data

Design

Models

•

- Stacked area chart used to show NetFlow statistics.
- **NVisionIP**
 - Shows port flow count per IP address, separated by common and uncommon ports.
- PortVis
 - Different level of details shown in multiple views.
 - Matrix is used to show the entire port range.
 - Uses normalization methods to show variance.
- We use stacked histograms to show individual packet statistics for instantaneous results.
- We show packet count/byte over time where aggregate port activity is grouped and shown initially.
 - Cube root normalization is used to show pattern and variance over time.

Forensic vs. Real time

 Browsing text logs for real time and forensic analysis is tedious.

Motivation

Related Work

Network

System

Threat

& Future

Work

onclusion

Data

Design

Models

- Real time is more challenging since it contains legitimate traffic in addition to malicious.
- Currently, we have used Honeynet traffic. Some techniques can be applied to real time traffic.

Network Data Forensic v.s Capture Real Time

Histograms

Motivation

Related Work

Network

System

Threat

& Future

Work

onclusion

Data

Design

Models

- Histograms are easy to interpret and good for visualizing large datasets.
- Values can be compared relative to each other, which is useful in visualizing time patterns.

• For 3 variable plotting, we use 2D stacked, rather than 3D for less program complexity and for more accurate value interpretation.

Graph Scaling

Goals: Avoid overlap and occlusion.

Motivation

Related Work

Network

System

Threat

& Future

Work

onclusion

Data

Design

Models

- Network traffic statistics are highly variable, and high values can skew the scale.
- Cube root scales the range of values including zero with the additional benefit that values less than one, but greater than zero, are still mapped to positive values.
- Infovis methods can be used (filtering, zoom, and mouseovers).

Graph Numbers Por Time Addresses

Graph Numbers Port Time Addresses

Port Scaling

• 65,536 possible port numbers - can not allocate each number to one pixel.

Motivation

Related Work

Network

System

Threat

Conclusion

& Future

Work

Data

Design

Models

- Ports have been grouped into ranges so we can fit the range on the graph.
- Well-known and commonly assigned ports 0-1023, 100 in a group.
 - Most traffic here, also most attacks start with these ports.
 - Registered ports 1024-49151, 10,000 in a group.
 - Can be used by an application or assigned for a connection attempt to a server.
 - Less traffic here than in well common ports.
- Private or dynamic ports 49152 65535
 - No service is typically assigned here.
 - These can still be used by malicious applications.

ports would be separated in regular traffic networks. Here port 445 is circled, separating it from ports 400-499 (red).

& Future

Work

IP Address Scaling

• 4 billion IPs total.

Motivation

Related

Network

System

Threat

& Future

Work

onclusion

Work

Data

Design

Models

- Matrix method has been used in SnortView, NVisionIP.
- Filtering on hosts in VizFlowConnect.
- This is still a work in progress for future implementation.
 - Possible ideas are pivoting the axis, and highlighting.

Threat models

Motivation

Related Work

Network

System

Threat

& Future

Work

onclusion

Data

Design

Models

- These types of attacks were selected because they occur the most.
- The botnet capture can be representative of backdoor/trojan behavior.

Worm

Scanning

Conclusion

- Good for detecting malicious activities that affect ports.
- Gives an overview of all port usage on a network.
- Non-port based activity can not be detected.
 - Gaining root access.

Future Work

Motivation

Related Work

Network

System

Threat

Conclusion

& Future

Work

Data

Design

Models

- Incorporate other header fields (e.g. ICMP, IP) for non port based attacks.
- Implement more info vis methods, HCI.
- Possibly incorporate the tool with multiple views of a network & other data (alarms, netflow).

Questions Feedback

Contact:

{kulsoom, chris, copeland}@ece.gatech.edu conti@cc.gatech.edu