
Visual Exploration of Malicious Network Objects Using
Semantic Zoom, Interactive Encoding and Dynamic Queries

Gregory Conti, Julian Grizzard, Mustaque Ahamad and Henry Owen

Georgia Institute of Technology

ABSTRACT

This paper explores the application of visualization techniques to
aid in the analysis of malicious and non-malicious binary objects.
These objects may include any logically distinct chunks of binary
data such as image files, word processing documents and network
packets. To facilitate this analysis, we present a novel
visualization technique for comparing and navigating among 600-
1000+ such objects at one time. While the visualization technique
alone has powerful application for both directed and undirected
exploration of many classes of binary objects, we chose to study
network packets. To increase effectiveness, we strengthened the
visualization technique with novel, domain-specific semantic
zooming, interactive encoding and dynamic querying capabilities.
We present results and lessons learned from implementing these
techniques and from studying both malicious and non-malicious
network packets. Our results indicate that the information
visualization system we present is an efficient and effective way
to compare large numbers of network packets, visually examine
their payloads and navigate to areas of interest within large
network datasets.

CR Categories and Subject Descriptors: C.2.3 [Computer
Communication Networks]: Network Operations - Network
Monitoring, C.2.0 [Computer Communication Networks]:
General - Security and Protection and H.5.2 [Information
Systems]: Information Interfaces and Presentation - User
Interfaces

General Terms: Security

Additional Keywords: binary object visualization, payload
visualization, binary navigation, packet visualization, network
visualization, reverse engineering

1 INTRODUCTION

Visualization of security data has recently emerged as a powerful
technique to provide insight and support analysis that is difficult

with traditional text and charting techniques as well as signature
and anomaly based machine processing. Current best practices in
the network visualization domain employ scatterplots [1,2,3],
parallel coordinate plots and line segments [4,5,6], glyphs [7],
geographic layout [8,9,10], text representation [11], graphs
[12,13] and similar high-level techniques to support security
analysts. While current techniques have been proven useful
through anecdotal evidence and evaluations [14,15,16,17], we
believe that they should be combined with low-level
representations of network packets, including payloads, to create
domain-specific highly interactive systems. To this end, we
present both a novel low-level visualization technique which we
call a binary rainfall and a visualization system which allows
users to semantically zoom [18] through eight representations of
network traffic. We also explore the use of dynamic queries [19]
and interactive encoding to enhance the performance of the
system.
 Some of the most promising network security visualization
systems to date make excellent use of packet header data,
particularly at the network and transport layers. While very useful
in certain instances, these systems do not adequately visualize
data at the application level and subsequently miss payload based
malicious activity. To address this issue, our binary rainfall
technique allows users to compare payloads of 600-1000+ packets
at one time. The system, shown in Figure 1, plots pixels in direct
correspondence to the bits in network packets, one packet per
horizontal row. Our results indicate that it presents, in a usable
and effective manner, 45-360 times more information than with
traditional hexadecimal representations.
 While text has been the most common way to examine packet
payloads, some research has been completed that uses
visualization and other techniques. Axellson combined a
Bayesian classifier with visualization to support analysis of HTTP
payloads [20]. Signature based intrusion detection systems, such
as Snort [21], excel at the pattern matching of packet payloads.
Ethereal [22] is an exceptionally comprehensive protocol
analyzer, which dissects packets and displays payloads in textual
format. In the area of intrusion detection, Wang and Stolfo
demonstrate a statistical approach based on the byte frequency of
packet contents and return results in the form of byte frequency
histograms [23]. In the area of file visualization, Yoo constructed
self-organizing maps based on the executable content [24],
abstracting away the underlying low-level binary structure. In the
related field of binary analysis, the IDA Pro disassembler [25]

and, to the best of our knowledge, all other reverse engineering
tools, rely solely on the textual representation of binary objects.
The common characteristic of these approaches is that they
display the payload solely in textual format or abstract away the
payload altogether and produce only higher-level information.
Our graphical approach attempts to break the paradigm of the
canonical hex and ASCII format used by these approaches, while
at the same time, allowing the analyst to view low level details of
packet headers and payloads.
 To test the efficacy of the rainfall visualization, semantic
zoom, dynamic queries and interactive encoding we implemented
a system that performs both live packet capture and forensic
analysis using libpcap formatted files. We examined a variety of
malicious and non-malicious network traffic including DEFCON
Capture the Flag [26], United States Military Academy
CyberDefense Exercise [27] and Honeynet Project datasets [28] as
well as datasets collected from a Botnet sinkhole created at
Georgia Tech. These datasets included worm traffic, buffer
overflows, network scans, trojans and other malicious activity. In
addition, we examined several classes of typically non-malicious
activity including SMTP, HTTP, Telnet, SSH, VoIP, FTP and
SSL. From this experience, we present results and lessons
learned.
 To summarize, the primary contributions of this paper are a
novel visualization technique that allows comparison of hundreds
of binary objects, experimental results from using the technique
on malicious and non-malicious network traffic datasets, an
application of the semantic zoom paradigm in the security
visualization domain and lessons learned from the design and
implementation of the underlying system.
 Section 2 describes the model and examines the design of the
system including the visualization technique, implementation
details and interaction paradigm. Section 3 describes the results
from a series of controlled laboratory experiments. Section 4

provides analysis of these results. Section 5 proposes directions
for future research and Section 6 presents our conclusions.

2 SYSTEM DESIGN

2.1 Design Overview
The primary design goal of the system was to provide users the
ability to view a large number of network packets in a way that
supports rapid comparison, deep and broad semantic
understanding, and highly efficient analysis capabilities. At the
same time, we wish to allow intuitive interaction in order to
remove noise and highlight packets of interest. To support this
interaction, we provided the user with controls for dynamic
queries, semantic zooming and interactive encoding. Section 2.2
explains the design of the visualization and Section 2.3 presents
the interaction paradigm. In section 2.4 we describe the
implementation of the system for use in network monitoring,
forensic analysis and intrusion detection.

2.2 Visualization Design
The binary rainfall visualization (Figures 1 & 2) was inspired by
the classic waterfall display used for spectrum analysis but instead
plots binary objects, one per horizontal line, in time sequence
order. The user interacts with the display using the semantic
zoom menu on the right portion of the window (Figure 1). While
conceptually this menu will allow a wide variety of views of the
data objects, we implemented eight, four graphical and four
textual. The graphical views plot pixels in direct correspondence
to the structure of the binary data. These four views include
plotting each bit of binary data as a monochrome pixel (Figure 1),
each byte of binary data as a grayscale pixel, each three bytes of
binary data as 24-bit RGB pixel as well as a rainfall representation
of byte frequency (Figure 3). The byte frequency view plots one
packet per horizontal line. Pixels along the horizontal axis, scaled
from 0-255, are illuminated based upon the frequency with which
the corresponding byte appears relative to each packet. The pixel

Figure 1: Binary Rainfall Visualization of Defcon 11 “Capture the Flag” Network Traffic. One packet is plotted per horizontal line. In this level
of zoom, each pixel represents one bit of network traffic. Network layer protocol headers are encoded in orange and the encapsulated IP
payload is encoded in green. This visualization allows analysts to readily compare approximately 600-1000+ packets per screen.

may be illuminated as a single color if one or more of a given byte
is present (byte presence) or encoded with color based upon the
frequency (byte frequency). The textual views allowed the user to
view the same objects as ASCII, hexadecimal, decimal or binary
representations. We provide each of these views to allow the user
to visualize network traffic as needed by their current tasks. As
we described in Section 1, current techniques for analyzing
network payload data rely almost exclusively on textual
representations. By combining textual header and payload
visualization with graphical techniques, we gain a significant
increase in the amount of data that can be displayed on the screen
at one time. Table 1 shows the increase, in various graphical
modes, when compared to ASCII and Hex representations.

Table 1: Comparison of graphical gains over textual representations of
binary data in terms of information density.

 Graphical ASCII Hex
 1 bit per pixel 15x 45x
 8 bits per pixel 120x 360x
 16 bits per pixel 240x 720x
 24 bits per pixel 360x 1080x
 32 bits per pixel 480x 1440x

 While generally applicable to many types of binary objects, we
applied the visualization technique to network packets in order to
test its effectiveness. A key criterion is that network packets are
highly structured and small enough, typically less than 1518
bytes, to be effectively displayed and compared using our
graphical modes.

2.3 Interaction Paradigm
The interaction paradigm for the system was designed to support
analysis of network traffic and includes three key components:
semantic zoom, dynamic queries and interactive encoding. By
manipulating these three aspects of the system, we wish to support
the user in identifying both malicious and non-malicious network
traffic. The semantic zoom menu, inspired by MapQuest’s [29]
street to country zoom paradigm, is shown in Figure 1. This menu
allows the user to easily view any of the eight representations with
the exception of the byte frequency view, which we chose to
implement in a separate window to facilitate side-by-side
comparison. The dynamic queries menu, not shown, uses double-

ended sliders to constrain sequential packet ranges, source and
destination IP address ranges as well as source and destination
UDP and TCP ports. The screen is automatically refreshed after
each change. The interactive filtering and encoding menu, shown
in Figure 4, exploits the logical relationship between filtering and
encoding at the protocol level. By depressing combinations of the
buttons (or checking boxes) users can dynamically filter the

Figure 2: Binary Rainfall Visualization Design. The bits of each packet are
plotted horizontally. Each new packet is plotted on a horizontal line below the
previous packet. The semantic zoom menu is present on the top right. An
optional detail view pane, in the lower right, allows viewing of a single packet.

Figure 3: Detail of Byte Frequency View: The byte frequency
view is one of the semantic levels available to the user. Bytes
(0-255) are plotted along the horizontal axis. As each packet is
plotted, pixels are illuminated according to the frequency of that
byte relative to each packet. The left figure shows the generic
design and the right figure shows the byte frequency of network
traffic from a Honeynet Project Scan of the Month Dataset.

packets visible on the display. Additional, custom designed,
filters such as the Slammer and Messenger Spam filters, shown
above, provide additional functionality. The user may also
experiment with various encodings by clicking on the colored
squares. By doing so, the user can choose a different color with
which to encode the protocol headers of the packet. This can be
seen in Figure 1 where network layer headers are encoded in
orange. Note that link layer headers would typically be visible as
well, but the DEFCON dataset was stripped of these headers,
presumably to anonymize MAC address information.

2.4 System Architecture and Implementation
The system (Figure 5) was developed using Microsoft Visual
Studio, primarily for its strength in rapid GUI development. Our
plan is to exploit the strength of GUI development under
Windows and port the software to a more robust Open GL / QT
application in the Linux/Unix environment after the user interface
and visualization design has been finalized. The primary test bed
system was an AMD 2500+ with 1GB of RAM, 64MB of Video
RAM, 10/100 network card and 160GB hard drive running
Windows XP.
 The application entitled RUMINT, short for rumor
intelligence, captures packets live from the network using the
winpcap library for kernel level capture and the PacketX [30]
ActiveX component for easy access to network data from Visual
Studio applications. While this proved straightforward for live
capture, PacketX unfortunately does not support pcap file access.
This proved problematic and we ultimately resorted to creating a
simple file format and building a pcap to RUMINT conversion
utility using C under Linux. The utility uses the Linux pcap
library to load and extract the packet capture file. It then
generates a unique end of packet marker and saves the packets in
a binary file using the packet marker as a separator. We used this

utility to convert all of our forensic capture files to the RUMINT
format. We leave integrated pcap file access for future work.
 When the packet data is loaded from a file or captured from the
network interface it is parsed and stored in a RAM buffer. We
chose a fixed limit of 100,000 packets. The user interacts with the
encoding, filtering and zoom menus to select the parameters of
interest. The system then queries the RAM buffer for the
appropriate packets and submits the data to the graphics engine.
The graphics engine updates any number of visualization
windows. While we have several other visualizations included in
the system, they have already been described [31]. We focus
instead on the novel visualization and interaction components.

3 RESULTS

To test the efficacy of the system we used it in a wide variety of
scenarios, both operational and experimental, with real-time
packet capture and with forensic packet capture files. We
interviewed 25 computer security specialists in individual and
group settings and used their feedback to guide iterations of the
system’s design. When implementation of their ideas was not
possible, we have included them, when appropriate in our future
work plans listed in Sections 4 and 5.
 Our initial experiments consisted of testing the system with
legitimate SMTP, HTTP, Telnet, SSH, VoIP, FTP and SSL
traffic. These tests allowed us to characterize what “normal”
traffic looks like. We then used the system to visualize a variety
of common attack tools in order to create additional visual
fingerprints using the approach described in [31]. We used
representative images from these results to create a “smart book”
for use by analysts. Sample images are shown in Figure 7. After
conducting this background work, we examined a variety of
malicious and non-malicious network traffic from forensic
datasets including those from the DEFCON Capture the Flag [26],

Figure 4: Interactive Filtering and Encoding Control Panel. This panel exploits the fact that filtering
and encoding are logically intertwined. It allows the user to perform dynamic queries on the network
dataset as well as customize color and other encoding techniques.

 the United States Military Academy CyberDefense Exercise [27]
and the Honeynet Project [28] as well as datasets collected from a
Botnet sinkhole created at Georgia Tech.
 Operationally, we used the system to monitor Georgia Tech
Honeynet traffic for ten months, from July 2004 to April 2005.
In a typical usage scenario, users loaded datasets of interest and
iteratively adjusted the menu parameters to focus on areas of
interest. For example, a user examining a honeynet dataset
wished to filter as much Internet background radiation [32] as
possible. Being familiar with Pang’s observation that a portion of
UDP traffic is caused by messenger spam, the user wished to
constrain the visualization to display only UDP traffic from
common messenger ports then confirm that the traffic was indeed
messenger spam and finally to filter those packets. The user first
viewed the entire data set and noted that a portion of the traffic
contained groups of nearly identical packets (Figure 7a) with a
high percentage of bytes in the printable ASCII range (Figure 7b).
The user examined the payloads of these packets and verified their
similarity (Figure 7c). Using semantic zoom, the user confirmed
the traffic as messenger spam (Figure 7d) and created a filter for
use with future datasets (the filter can be seen in Figure 5). We
found that our test subjects liked the notion of working through
slices of the traffic and then removing them from the dataset. By
iteratively removing noise from the display, this approach takes
maximum advantage of the high-bandwidth visual recognition
capability of human analysts and allows them to incrementally
remove known traffic and focus on the unknown, but interesting
remainder.

4 ANALYSIS

4.1 Visualization Design
We were pleased with the overall design of the visualization. Its
primary strength is the lack of abstraction, making it ideal for low-
level analysis of network packets and other binary objects. The

byte frequency display augments the bit and byte level graphical
views and provides insight into the nature of the traffic. We
found it most useful to rapidly classify traffic as human readable,
machine readable or encrypted. Both techniques effectively
allowed over 1,000 network packets to be viewed at a very
detailed level and easily compared. The exact number of objects
that can be displayed approaches the vertical resolution of the
user’s monitor. This upper limit proved to be sufficient when
combined with zooming and filtering, but we envision the need to
allow the user to page, or scroll, through multiple screens of
content rather than the confine them to the single view window
that our current system provides. While the system succeeded in
visualizing a large number of objects, the rainfall visualization is
limited to displaying approximately 1000 bits (1 bit / pixel mode),
1000 bytes (8 bits / pixel mode) and 3000 bytes (24 bits / pixel
mode) of each packet at any given time. In some instances this
might prove to be an obstacle, but in the case of network packets
it was successful, particularly when compared with a pure
ASCII/Hex text display. Ethernet frames are limited to 1518
bytes1 which is well within the display parameters of the system.
In future implementations we will also consider the addition of a
traditional, i.e. non-semantic, zoom capability to allow far more of
the data to be displayed. It is important to note that test users
found the 1 bit and 8 bits per pixel modes most effective. The 24
bit mode proved useful for comparing packet length, but little
else. In future work we plan to test combined modes that use a
higher resolution (1 bit and 8 bits per pixel mode) display for
header data and lower resolution (8 and 24 bits per pixel) display
for payload data.

1 Although, in certain applications, “jumbo frames” of up to 9,000
bytes are possible.

Figure 5: System Architecture. Network traffic is collected through packet capture or replayed from forensic
pcap files. The system stores complete packets, both headers and payloads, in a RAM buffer. The user
interacts with the user interface and the resulting data is pulled from the buffer and sent to the graphics
engine for display using a number of visualizations. Additional information may be provided by devices such
as firewalls and intrusion detection systems and used to assist encoding, filtering and semantic zooming.

 While the visualization provides high information density it
comes at the cost of lost timing data. Packets are visualized as
they arrive, which results in an information rich display that is
useful for comparing packets. Spacing packets based on time of
arrival is easily possible, but would create a sparsely populated
display that we believe would hinder analysis.
 It is also important to consider the security of graphical binary
rainfall screenshots. Because the graphical modes represent large
amounts of actual network traffic, to include payloads, it would be
straightforward for an attacker to extract this information by
creating an application which examines pixels. The same amount
of care should be taken with these images as when sharing
network capture files. In future work we will consider creating
anonymization tools for the images similar to tcpdpriv and
ipsumdump. We also believe that many classes of information
visualization tools, including our system, are subject to overt and
covert manipulation by malicious entities who inject carefully
crafted traffic into the network [33].

4.2 Interaction Design
Effective interaction is key to the value of the system. While the
binary rainfall visualization technique allows users to compare
600-1000+ binary objects and detect general patterns, anomalies
and outliers, it is most effective when combined with dynamic
queries, semantic zoom and interactive encoding. Our users
used these capabilities to focus on areas on interest, but an
unpredicted filtering issue emerged. Our system design failed to
take into account the user’s need to toggle between a filtered
range and its inverse. Users desired this capability to examine
certain classes of traffic and then remove that slice of data from

view. Essentially, what was required was the ability to invert
each filter. While we were able to hard code this capability in
select instances, we envision, in future systems, the utility of a
filter database where analysts can build and share these filters
(perhaps with analyst comments). Each filter would have three
states: off, on (band pass) and on (inverted band pass).

4.3 System Design
System performance was acceptable up to 100,000 packets, but
was sluggish beyond this level. There were two primary reasons:
slow graphics operations and inefficient data structures to buffer
packet data. We were not surprised by these limitations. The
strength of Visual Studio lies not in efficient graphics operations
and pointer-based data structures, but in rapid GUI development.
In the future, we believe we can achieve an order of magnitude
performance boost by utilizing Open GL and more efficient data
structures.

5 FUTURE WORK

There are several directions we are considering for future work.
While our current work addresses the visualization of individual
network packets we would like to modify the system to
reconstruct TCP flows. From these flows we plan to reconstruct
entire application level payloads, executable payloads in
particular, and examine them for malicious content such as buffer
overflows. We also plan to apply the rainfall visualization
technique to file system security problems. For example, we
believe it will allow large numbers of files to be directly
compared and examined for header overrun exploits common in
various file types such as JPEG and MP3.

 a. ASCII text file retrieved via HTTP (1 byte per pixel) b. ASCII text file byte frequency

c. SSH traffic (1 byte per pixel) d. SSH traffic byte frequency

Figure 6: Comparison of ASCII (a & b) and SSH (c & d) network traffic. The binary rainfall images (left column) provide a quick overview
of packet structure. Headers and packet lengths are readily apparent. The byte frequency images (right column) clearly show the
difference between printable ASCII content (b) and encrypted content (d). Solid vertical lines indicate reoccurring values such as constant
header fields. Diagonal lines indicate incrementally changing values, such as sequence numbers.

6 CONCLUSIONS

In this paper, we explored the combination of dynamic queries,
semantic zooming and interactive encoding with a visualization
technique for comparing large numbers of binary objects. We
proposed a general model for the design of such systems and used
it to guide the development of an information visualization
system. We then used the system to study several datasets
containing large numbers of malicious and non-malicious network
packets. We believe the binary rainfall visualization technique is
useful for off-line forensic analysis of network datasets and, to a
lesser degree, for real time network monitoring and intrusion
detection. In both applications it should be augmented with
dynamic queries, semantic zooming and interactive filtering to
eliminate noise and highlight areas of interest. We also believe
that these techniques would work extremely well for navigation
within and analysis of binary files, particularly when combined
with semantic encoding and transforms based on knowledge of
the file type.

ACKNOWLEDGEMENTS

We would like to thank Bill Cheswick, Tom Cross, David Dagon,
Ron Dodge, Jeff Gribschaw, Oleg Kolesnikov, Mike Hamelin,
Sven Krasser, Wenke Lee, David Maynor, Rand Smith, Jason
Spence, John Stasko, Grant Wagner and the Yak Group for their

thoughtful comments. In addition we would like to thank the
Georgia Tech Information Security Center
(www.gtisc.gatech.edu), United States Military Academy
Information Technology and Operations Center
(www.itoc.usma.edu), Interz0ne (www.interz0ne.com) and
DEFCON (www.defcon.org) communities for their continued
support and feedback.

REFERENCES

[1] Tom Goldring. “Scatter (and other) Plots for Visualizing User
Profiling Data and Network Traffic.” ACM Workshop on Visualization
and Data Mining for Computer Security (VizSec/DMSec), 2004.

[2] Jonathan McPherson, Kwan-Liu Ma, Paul Krystosek, Tony Bartoletti,
Marvin Christensen. “PortVis: A Tool for Port-Based Detection of
Security Events.” ACM Workshop on Visualization and Data Mining for
Computer Security (VizSec/DMSec), 2004.

[3] Kiran Lakkaraju, William Yurcik, Adam Lee, Ratna Bearavolu, Yifan
Li, and Xiaoxin Yin. “NVisionIP: NetFlow Visualizations of System
State for Security Situational Awareness.” ACM Workshop on
Visualization and Data Mining for Computer Security (VizSec/DMSec),
2004.

[4] Marchette, D. Computer Intrusion Detection and Network
Monitoring: A Statistical Viewpoint, Springer, 2001.

[5] Soon Tee Teoh, T. J. Jankun-Kelly, Kwan-Liu Ma, and S. Felix Wu.
“Visual Data Analysis for Detecting Flaws and Intruders in Computer
Network Systems.” IEEE Computer Graphics and Applications, IEEE

 a. View of Georgia Tech honeynet traffic (with headers) b. Byte frequency of Georgia Tech honeynet traffic

Figure 7: Use of the System to Rapidly Identify and Filter Traffic. An analyst views a day’s capture from the Georgia Tech Honeynet
(a) and examines the byte frequency of the packets (b). Several sets of packets have a large number of bytes in the printable ASCII
range. By using the interaction menus, the analyst examines the payloads of these packets and verifies their similarity (c). Using the
semantic zoom capability, the analyst confirms the traffic as messenger spam (d) and creates a filter that can then be used with future
datasets (the filter can be seen in Figure 5).

 c. Filtering all traffic, but UDP ports 1026 and 1027 d. Closer examination confirms traffic is Messenger Spam

Computer Society Press, September/October, 2004.

[6] Xiaoxin Yin, William Yurcik, Michael Treaster, Yifan Li and Kiran
Lakkaraju. “VisFlowConnect: NetFlow Visualizations of Link
Relationships for Security Situational Awareness.” ACM Workshop on
Visualization and Data Mining for Computer Security (VizSec/DMSec),
2004.

[7] Robert Erbacher, Kenneth Walker and Deborah Frincke. “Intrusion
and Misuse Detection in Large-Scale Systems.” Computer Graphics and
Applications, Vol. 22, No. 1, January/February 2002, pp. 38-48.

[8] Tamara Munzner. “Interactive Visualization of Large Graphs and
Networks.” Ph.D. dissertation, Stanford University, June 2000.

[9] The Cooperative Association for Internet Data Analysis (CAIDA).
http://www.caida.org/.

[10] Eleftherios Koutsofios, Stephen North, Russell Truscott, Daniel
Keim. “Visualizing large-scale telecommunication networks and services
(case study).” IEEE Visualization, 1999.

[11] Hideki Koike and Kazuhiro Ohno. “SnortView: Visualization
System of Snort Logs.” ACM Workshop on Visualization and Data
Mining for Computer Security (VizSec/DMSec), 2004.

[12] Graphviz - Graph Visualization Software. http://www.graphviz.org/.

[13] Etherape: A Graphical Network Monitor.
http://etherape.sourceforge.net/.

[14] Anita Komlodi, John Goodall and Wayne Lutters. “An Information
Visualization Framework for Intrusion Detection.” ACM Conference on
Human Factors in Computing Systems (ACM CHI), 2004.

[15] Robert Ball, Glenn Fink, Anand Rathi, Sumit Shah, and Chris North.
“Home-Centric Visualization of Network Traffic for Security
Administration.” ACM Workshop on Visualization and Data Mining for
Computer Security (VizSec/DMSec), 2004.

[16] William Yurcik, James Barlow, Kiran Lakkaraju, and Mike
Haberman. “Two Visual Computer Network Security Monitoring Tools
Incorporating Operator Interface Requirements.” ACM CHI Workshop
on Human-Computer Interaction and Security Systems (HCISEC), 2003.

[17] Edwin Blake. “An Extended Platter Metaphor for Effective
Reconfigurable Network Visualization.” 8th International Conference on
Information Visualisation (IV), 2004.

[18] Benjamin Bederson and James Hollan. “Pad++: a zooming graphical
interface for exploring alternate interface physics.” ACM Symposium on
User Interface Software and Technology (UIST), 1994.

[19] Christopher Williamson and Ben Shneiderman. “The dynamic
HomeFinder: evaluating dynamic queries in a real-estate information
exploration system.” ACM Conference on Research and Development in
Information Retrieval (SIGIR), 1992.

[20] Stefan Axelsson. “Combining a Bayesian Classifier with
Visualisation: Understanding the IDS.” ACM Workshop on Visualization
and Data Mining for Computer Security (VizSec/DMSec), 2004.

[21] Snort: the de facto standard for intrusion detection/prevention.
http://www.snort.org/.

[22] Ethereal: A Network Protocol Analyzer. http://www.ethereal.com/.

[23] Ke Wang and Salvatore Stolfo. “Anomalous Payload-based Network
Intrusion Detection.” Seventh International Symposium on Recent
Advances in Intrusion Detection, 2004.

[24] InSeon Yoo. “Visualizing Windows Executable Viruses Using Self-
Organizing Maps.” ACM Workshop on Visualization and Data Mining
for Computer Security (VizSec/DMSec), 2004.

[25] IDA Pro Disassembler - multi-processor, windows hosted
disassembler and debugger. http://www.datarescue.com/idabase/.

[26] Capture the RootFu! The Shmoo Group.
http://www.shmoo.com/cctf/.

[27] CyberDefense Exercise. United States Military Academy.
http://www.itoc.usma.edu/cdx/.

[28] Scan of the Month. The Honeynet Project.
http://www.honeynet.org/scans/

[29] Maps, Directions and More. MapQuest. http://www.mapquest.com/.

[30] PacketX - wrapper for WinPcap packet capture library. beeSync
Technologies. http://www.beesync.com/packetx/index.html.

[31] Gregory Conti and Kulsoom Abdullah. “Passive Visual
Fingerprinting of Network Attack Tools.” ACM Workshop on
Visualization and Data Mining for Computer Security (VizSec/DMSec),
2004.

[32] Ruoming Pang, Vinod Yegneswaran, Paul Barford, Vern Paxson and
Larry Peterson. “Characteristics of Internet Background Radiation.”
ACM SIGCOMM Internet Measurement Conference (ACM-IMC), 2003.

[33] Gregory Conti, Mustaque Ahamad and John Stasko. “Attacking
Information Visualization System Usability: Overloading and Deceiving
the Human.” Symposium on Usable Privacy and Security (SOUPS), 2005.

The views expressed in this article are those of the authors and do not reflect the
official policy or position of the United States Military Academy, the Department of
the Army, the Department of Defense or the United States Government.

This work was supported in part by the National Science Foundation Information
Technology Research award 0121643.

