
Automated Webpage Evaluation
Ryan Tate, Gregory Conti, Edward Sobiesk

Army Cyber Center

U.S. Military Academy

West Point, New York 10996 USA

ryan.tate@usma.edu, gregory.conti@usma.edu, edward.sobiesk@usma.edu

ABSTRACT

Webpage evaluation and metrics have historically focused on

page-level characteristics or on key words. We introduce an

automated technique for graphically measuring specific elements

on a webpage. Our technique provides a means to increase the

fidelity of webpage analysis and introduces a novel metric focused

on the number of pixels that certain elements occupy in a browser

window. We implemented the technique as a Firefox extension

and successfully tested it on Alexa’s top 25 U.S. websites. The

technique is fully automatable and consistently measures a

customizable set of elements as they appear to users in the Firefox

web browser. Importantly, the application allows for

communication with and the incorporation of other browser-based

tools or extensions. We discuss design considerations and

creative solutions to technical implementation challenges. The

application provides for a wide range of research opportunities

that may require a new level of fidelity in webpage analysis and

comparison.

Categories and Subject Descriptors

D.2.8 [Software]: Metrics - product metrics.

H.3.5 [Information Storage and Retrieval]: Online Information

Services – data sharing, web-based services.

K.6.5 [Management of Computing and Information Systems]:

Security and Protection - invasive software.

General Terms

Measurement, Security, Human Factors, Standardization

Keywords

web measurement, web content analysis, interfaces, interface

design, user experience, webpage analysis

1. INTRODUCTION
Research techniques for evaluating webpage content on the World

Wide Web (WWW) usually focus on the entire page, on metadata,

or on key phrases. As webpages become more complex and

increasingly integrate content from multiple sources, there must

be reliable and automated means to measure specific HTML

elements or content categories within the page. Such a capability

can assist researchers and organizations in learning about

common patterns within webpages, similarities of particular

content embedded within webpages, usage characteristics,

invasive advertising, the correlation of specific content with

various rankings, and other research questions at a finer level of

detail than simply considering the entire webpage, specified

metadata, or key word searches.

This paper introduces an automated technique we developed for

graphically measuring specific webpage content at a

(customizable) granularity below page level. Our technique is

implemented as an extension that runs in the Mozilla Firefox web

browser. It is fully automated and works consistently on most

popular webpages. Importantly, the tool uses a creative procedure

that allows for communication with and the incorporation of other

browser-based tools or extensions. The tool provides for a wide

range of research opportunities that may reach a new level of

fidelity in webpage analysis and comparison.

In this paper, we discuss the significant considerations involved

with our automated technique and we describe and document the

resulting application we created that measures specific content

within a webpage. We also cover critical technical challenges we

encountered in building the application as well as creative

solutions to these challenges. We then demonstrate the

application‘s operation. We conclude with related work and

several straightforward, feasible adaptations that would make the

application of value for many diverse purposes.

2. DESIGN CONSIDERATIONS
Designing an application to consistently measure specific

elements within a webpage requires a clear picture of what is a

useful metric for elements on a page, a clear definition of what

constitutes measurable content on a page, and the technical means

to accurately measure such content. We implemented a Mozilla

Firefox browser extension that satisfies these requirements by

determining the number of pixels that a browser displays for

selective HTML content elements. The important first step

toward developing that application was clearly determining an

appropriate metric.

2.1 Graphical Content Measurement
There exist many methods to measure a webpage. They include

page load time, popularity, user satisfaction, byte size, diversity of

content, colors, motion, etc. In general, a good metric for this

task should be contextually specific, quantifiable, and can be

consistently inexpensively measured [1]. Our application

proposes such a metric.

Our recommended metric for measuring webpage elements is

computing the number of pixels that a web browser displays for

each (HTML) element. While sounding simple, in today’s web

environment automating the computation of this metric’s results

This paper is authored by an employee(s) of the United States

Government and is in the public domain. Non-exclusive copying or

redistribution is allowed, provided that the article citation is given and

the authors and agency are clearly identified as its source.

SIGITE/RIIT'13, October 10 - 12 2013, Orlando, FL, USA

2013 ACM 978-1-4503-2494-6/13/10

http://dx.doi.org/10.1145/2512209.2512220

actually involves many complex issues, as will be seen as we

describe the actions and techniques of our application. Our metric

of computing the number of pixels per element quantifies how

much of a valuable, limited resource (the browser window) a

particular element consumes. It is feasible to determine this

number when operating from within a browser which must

determine how to (consistently) display the many diverse HTML

elements it receives from various sources.

Webpages are primarily a visual presentation of information. One

of the most important questions a web designer must answer is

how much screen space to allocate to each element of a page. The

larger any particular element appears, the greater the percentage of

the presentation it occupies. Larger elements, such as a featured

passage or featured advertisement, generally occupy more of a

user’s attention. Measuring elements by counting the number of

pixels that they occupy in the browser is therefore contextually

specific and quantifiable. In today’s multi-source web

environment, though, an automated calculation of element

displayed pixel count is not entirely straightforward.

There must be a distinction between the pixels of the measurable

content -- the message, such as an image or the words of a

paragraph -- and the effects of style-rendered pixels immediately

surrounding an element, such as border and padding. Pixels that

fit within the context of a webpage’s message are the pixels of an

HTML element that lie inside all padding, border, and margin.

Style-rendered pixels, on the other hand, are typically solid-

colored “whitespace” pixels that provide a means to spatially

arrange and emphasize certain elements on a webpage. This

aligns with the classic distinction between style as in Cascading

Style Sheets (CSS) and content in HTML design. For example,

an identical image may appear on multiple webpages with

different border and margin settings. Content pixels notably

incorporate adjustments to height and width such as font size:

they describe the pixels that users actually see and process. Based

on this situation, it is important to define which elements count as

content.

2.2 Defining Webpage Content
Ask a group of web users to define the content of a webpage and

an inconsistent definition will inevitably emerge. What

constitutes ‘content’ is relative to purpose. Therefore, a metric

calculating content should allow for the measurement of selective

or customizable categories of content. Our application is

powerful enough to accurately describe certain sets of elements on

a webpage such that one can automate tracking of them while

easily redefining content categories. In some cases, this may

amount to identifying certain HTML tags, such as all images.

Another method is to use CSS selectors for more precision. CSS

selectors describe elements on a webpage by using HTML tag

type, height and width attributes, background color, id or class

attributes, and other descriptors. No matter the means, the end

state is the ability to describe exactly which elements of a

webpage are content such that our application can count the pixels

of each. As will be shown in the next subsection, piggybacking

on web browser capabilities can make this task much simpler.

2.3 Importance of the Web Browser
A webpage content measuring tool must determine how to display

particular elements on the screen based on HTML and other code

and how to classify elements based on CSS selectors. Building an

application that is able to parse HTML, CSS, Javascript, and other

webpage technologies, classify elements based on selectors,

resolve overlap, boundary, and padding conditions, and finally

count the pixels of each element is a significant undertaking. All

of these tasks are essentially the job of web browsers. Despite

very clear and accepted WWW standards, however, web browsers

frequently display the same code differently. To remain

contextually specific, it is important to capture content as users

will actually see it. Using a popular existing web browser ensures

that our application remains updated as standards and practices

change. Therefore, we chose to make the web browser part of the

application.

One option is to display a webpage within a browser while using

an external program to capture elements on the screen. However,

clearly defining the boundaries of elements and differentiating

style from the true content would be difficult. We instead decided

to build a browser extension (add-on). Our tool extends the

popular Mozilla Firefox web browser because it brings portability

across operating systems and is open-source with excellent

documentation. By extending the browser, the browser itself

becomes a key building block that makes creation of the tool

much simpler. Browsers parse and analyze the HTML, CSS, and

script code composing a webpage in order to properly render the

page. Firefox exposes the various methods and properties

associated with its rendering of webpages and their elements to

extension code - making our application easier to build. Many of

these HTML rendering methods are standardized across various

popular browsers thanks to the World Wide Web Consortium

(W3C) Document Object Model (DOM). In the next section, we

describe how to use DOM methods to overcome difficult

technical challenges to measuring webpage elements.

3. IMPLEMENTATION HIGHLIGHTS
Design considerations significantly guided implementation, but

building the application brought significant technical challenges

requiring creative solutions. Foremost, programmatic

identification of content elements was difficult given the wide

range of HTML code in practice on the web. Obtaining automatic

and accurate measurements of displayed pixels for each content

element required some modifications to built-in capabilities to

separate rendered style and account for embedded windows

(iframes). Dynamic and multi-sourced webpages presented a

challenge in determining when a page was completely loaded.

Integration with other extensions required working around the

protections browsers enforce between different extension

codebases for security and other purposes. And finally, the

testing and debugging demanded a means for the programmer to

visually confirm results.

Building a Firefox (or any browser) extension requires some

initial understanding of an extension file structure but primarily

involves Javascript use and a basic knowledge of the W3C DOM.

The Mozilla Developer Network has tutorials and a repository of

references available at https://developer.mozilla.org/en-

US/docs/Building_an_Extension. The important tools for

accessing a webpage document and the necessary browser

methods are available through Mozilla’s DOM API or XPCOM

API. Using the DOM, an extension is able to access and

dynamically change the content, structure, and presentation of a

webpage much like Javascript embedded within a page but more

so. In this section, we will focus on the important DOM methods

necessary to implement the critical parts of the application. The

source code of our tool is available at

http://www.rumint.org/gregconti/publications/awe1.zip.

https://developer.mozilla.org/en-US/docs/Building_an_Extension
https://developer.mozilla.org/en-US/docs/Building_an_Extension
http://www.rumint.org/gregconti/publications/awe1.zip

The basic algorithm for the application is to find and learn the

position and sizes of all content elements displayed in the browser

once a webpage fully loads. Key steps involve obtaining

programmatic access to content elements, measuring their size and

position on the screen, determining when to obtain and measure

elements, integrating with other browser tools, and testing and

debugging. Below, we describe creative ways to overcome the

technical challenges these steps presented.

3.1 Identifying and Describing Content

Elements
Research objectives will dictate which elements of a webpage will

be treated as the measurable content. This aspect of the process is

not automatable. A good technique is manual inspection of

several different webpages of interest in order to identify patterns

and common elements of interest. In most cases, this will be

fairly straightforward. Consider Figure 1 as an example of a

generic webpage as it would appear in a browser window.

Research may require the ability to measure the images or Flash

objects on a page, for example.

Figure 1. The appearance of a generic webpage with various

HTML elements displayed in a browser window.

Existing tools like Mozilla Firefox’s DOM and Style Inspector

assist the researcher in identify particular elements. With a right-

click on the webpage, the tool highlights selected elements within

the page’s HTML code in a window below the display of the

page, revealing an element’s tag name and other attributes and

property values. The simplest method to classify elements as

content is by tag type, but any programmatic method of

distinguishing HTML elements using the DOM API is possible.

One could view the DOM tree created from Figure 1 using the

Firefox DOM and Style Inspector. In the DOM, an HTML

document is basically a navigable and manipulatable tree of

HTML elements. The tree reflects the structure of the HTML

code for the webpage. It is possible to programmatically navigate

the tree using DOM API methods on each element, such as

childNodes and parentElement. The DOM tree includes more

than HTML elements; it also allows access to text nodes.

In Figure 1, the paragraph below the Flash object has three types

of text: plain text, a hyperlink, and bolded text. A browser

renders each passage of text according to its parent (containing)

HTML element in the DOM tree. These HTML elements dictate,

for example, if the text should be block or inline and bold or

italics. In every case, the text itself is a child of those elements

known as a text node. The difference between an element and a

text node will be important for classifying text. Text displayed on

the screen may appear inside paragraph, heading, bold, list item,

and many more HTML tags. In practice, web designers use nearly

all block-level and inline tags as container elements for text.

Rather than listing every possible text containing tag as content, it

is simpler to just consider all DOM text nodes as content and

selectively eliminate undesired parent element tag types. This

method has important implications for measuring text as content,

which we discuss in the next subsection. After the researcher

determines which elements or nodes to consider as content, the

next step is to describe them such that the application may locate

them within the DOM tree of any webpage.

The simplest method of describing content elements for an

application is to identify elements by HTML tag name. The most

straightforward approach is to traverse a document’s tree with a

recursive depth-first algorithm, beginning with the document

(root) node and using the childNodes method. An element in the

DOM is essentially an object that has many accessible properties

which an application can evaluate in order to classify it as content.

A more precise approach to obtaining content nodes is to pattern

match specific elements using CSS selectors. A DOM element

method called querySelectorAll returns a depth-first, pre-order

search of all elements matching a comma separated list of CSS

selectors. Describing content in terms of a combination of CSS

selectors is a proven technique for many other works and all

browsers support CSS selectors to be able to apply style rules. It

is possible to describe content using CSS selectors based on

HTML tag type, class name, or even certain properties. Either

tree traversal with element property inspection or the obtaining of

a list of elements from querySelectorAll provides access to the

desired content on a webpage. The next step is to measure the

pixels of each element in the content list.

3.2 Measuring Content Pixels
The content our application identifies includes any image, video,

embed, or object element and any displayed text. Object and

embed tags may include Flash that appears on a webpage. The

first four elements each have HTML tag names (such as IMG)

which our application uses to identify those elements as content

while traversing a webpage’s document tree. Most HTML

elements occupy a rectangular space on a page which the browser

has calculated. Measuring displayed text requires some additional

manipulation of the document. In both cases, measuring the true

content pixels of an element in a webpage (as opposed to style

pixels) depends on several important definitions.

First, there must be a consistent means to classify exactly which

pixels count as content and which do not. For example, HTML

and CSS code may render an image on the browser window along

with a border and a large margin. The basic premise is to draw a

rectangle around the ‘true content’ pixels of each content element.

Next, text on a webpage may appear in conjunction with

significant whitespace depending on whether it falls inside a

block-level or inline tag. And last, there must be a method for

determining how to classify pixels from different elements on a

webpage that may overlap and obscure each other.

3.2.1 Minimum Bounding Rectangles
Not every pixel rendered in a web browser will become the focus

of a user’s attention. Web browsers may render padding, border,

and margin to almost any HTML element using the CSS box

model. These three properties allow web designers to creatively

decorate or emphasize certain elements as well as spatially arrange

them. Figure 2 shows the same generic webpage as Figure 1, but

emphasizes the effects of padding, border, and margin which a

browser renders based on CSS, style rules, scripting, or other

methods. The markup in Figure 2 helps to show the effects of the

CSS box model and where each element’s pixels actually begin

and end.

Figure 2. The generic webpage shown in Figure 1 with select

markup of HTML element tag names. A thin border around

many of the elements indicates an element’s boundary. While

each element has padding, border, and margin (possibly 0

pixels), only those of the large image element are annotated.

Our application discounts the pixels of all padding, border, and

margin because they are aspects of style - not the element itself.

For example, a web browser may display an image with a large

border, but the file itself has no border. Moreover, the same

image may appear on different pages with differing style

renderings and some browsers may even display those style rules

differently. The style of a webpage plays an important role, but

we distinguish it from the content of a page. This definition of

content narrows the selected pixels to those that form the actual

message that users take away from the page – the message

contained in the words and images of the page. The result is

essentially a minimum bounding rectangle that surrounds an

image or object element but not its padding. Figure 3 depicts

these content rectangles (in blue) for elements in the same

webpage as Figures 1 and 2.

Determination of an element’s minimum bounding rectangle is

simple for most HTML elements because the element method

getBoundingClientRect provides an element’s left, top, width, and

height within a browser window. A window is a browser window

object (a frame) that displays a webpage document once the

document is loaded. The getBoundingClientRect element method

includes any border and padding the browser renders along with

the element. It is possible to remove those attributes by first

obtaining the final computed list of style rules from the window

method getComputedStyle. The list contains the number of

padding and border (and scrollbar) pixels for all elements.

iframes, which are separate documents with their own windows

displayed within the main browser window, complicate the

absolute positioning of their elements. Many webpages use

iframes to display external content or for other reasons, and often

even nest them. Since bounding rectangle measurements are

relative to a document’s window, absolute element rectangle

positions – and whether they are completely visible – depend

upon the determination of each iframe’s offset within the main

window. Offset calculations must accumulate the offset values of

each iframe, to include recursively calculating all nested iframes

and applying the final offsets to their elements. Elements may

also overlap and occlude each other for other reasons.

Figure 3. This figure depicts our application identifying

content (blue) regions from the generic webpage of Figures 1

and 2. Content includes image, video, embed, object elements

and displayed text. Content regions are based on bounding

rectangles which ignore padding, border, and margin.

The complexity of HTML and CSS may result in the overlap or

occlusion of other elements. It is necessary to determine how

much of a bounding rectangle is actually visible. This begins with

finding the bounding ancestor element. Our application

accomplishes this by evaluating each ancestor element in a

bottom-up algorithm using each element’s parentElement method,

stopping when one of the ancestor’s own bounding rectangles

restricts it or when reaching the HTML body or iframe element.

Restriction is based on the overflow property or, if desired, the

edge of the browser window. Those restrictions essentially reduce

the size of the bounding rectangle. An element’s opacity,

visibility, z-index, and display properties may also affect the

visibility of an element’s rectangle. The z-index property can

cause overlap between elements, for example.

Webpage designers usually avoid accidental overlap between

elements, but it happens by design or browser inconsistencies as

well. Default HTML element stacking order provides that

elements appearing last in the code will appear on top unless they

are positioned outside the normal flow and given a different stack

order (z-index). For implementation simplicity, we assumed the

default stack order of elements by traversing the document tree in

a depth-first manner. In the case of overlap between like elements

(i.e. content-content), this assumption does not affect the correct

classification of overlapping pixels. However, there is a problem

where content and non-content elements stack according to a

different order. A solution is to clear or reclassify all pixels of

non-content elements encountered during a stack order traversal

of a document’s elements.

3.2.2 Recording Content Pixels
To record the final content bounding rectangles, our application

uses an HTML canvas that it dynamically inserts over the main

document. The canvas element allows web designers to draw and

animate graphics, such as rectangles. The canvas functions as a

built-in 2D hashtable of pixels. Automated drawing of the final

bounding rectangles of each content element essentially labels the

content pixels in their absolutely positioned locations and assists

with visually confirming the results. The overall calculation of

content pixels amounts to a single pass over the canvas while

counting pixels within the labeled rectangles. The final

measurement of all content is basically the sum of the areas of all

blue rectangles in Figure 3.

3.2.3 Capturing Text
Figure 3 depicts the inclusion of text pixels as content. As

Section 3.1 introduced, capturing text as content is more

complicated than capturing a bounding rectangle around other

HTML elements. To capture the text of a document, a creative

and effective technique is to insert an arbitrary span element into

the document as the immediate parent of all text node descendents

of the root body element. DOM methods createElement,

insertBefore, and appendChild provide the means to achieve the

desired effect. For example, an h1 tag containing text becomes

the grandparent of the text node – with a span taking its place as

the immediate parent. With a few steps to ensure the span does

not alter browser text rendering, spans create an anchor for

obtaining a bounding rectangle for any passage of text.

Since the span is an inline element, it helps minimize whitespace

pixels when calculating the number of pixels that text actually

occupies in a browser window. Inserted spans should include a

special class attribute that will classify them as content and have

the padding, margin, and border set to 0px through inline style

(inline style rules take precedent). It is also helpful to surround

each contiguous set of non-whitespace text (text that is not a

carriage return or newline, for example) with its own span. This

may result in several inserted spans within a single, original text-

containing element, but this further reduces whitespace and makes

measurements more accurate to ‘true content.’ Not every text

node is content; the application should ignore text nodes within

elements such as style and video that are not normally visible in

the browser. These additional measures assist in more accurately

measuring the number of pixels of the text and prevent the

possible double-counting of text that appears inside multiple

elements.

3.3 Initiating Measurements
The web is dynamic. Designers competing for user attention

create flashing, animated, and interactive webpages. Many

popular websites use various scripts. This environment

complicates the decision of when to measure a webpage because

the measurements may change over time. It may change by

design, through user interaction, scripting, or simply because of

lags in page loading. The researcher may be interested in the

change of measurements over time or with user interaction, but for

simplicity our application currently measures a webpage at a

single point in time shortly after page load.

Browser extensions are able to listen for certain events associated

with webpages, such as a document “load” which indicates when

a document and all of its resources have fully loaded. However,

this event may fire before embedded documents (iframes) load, as

they depend upon user or location parameters that dynamic pages

detect in various ways. Our application measures a webpage five

seconds after the base document’s “load” event. We empirically

confirmed the 5 second delay was sufficient for every webpage in

our dataset to fully load all iframe documents and for scripted

elements to “settle” (excluding user interaction).

3.4 Integration with Other Browser Tools
Integration of another developer’s external application may

provide the best means of determining content or for further sub-

classifying content. There are thousands of browser extensions

that fulfill various purposes, but fundamental browser security

demands a separation that makes communication between them

difficult. An innovative solution is to modify elements of the

document by dynamically inserting an arbitrary class attribute to

elements in a live document and therein share information

between extensions. Since all extensions have access to the

document HTML code and its current state, this technique safely

bridges the security barrier. For example, we modified Adblock

Plus [2], a popular ad blocking extension, to label advertising

elements as a particular type of content by inserting a unique class

name for those elements in the live document. Our content

measuring application included this class name in the list of CSS

selectors describing the content and added those elements to the

tracking canvas with a different color to distinguish them as a

unique subclass of content.

3.5 Testing/Confirmation
Using an HTML canvas to track content pixels provides the key

ability to visually confirm that rectangles align properly with

content elements. It is also possible to insert arbitrary properties

and values into elements of a document, such as the dimensions of

bounding rectangles, to permit a manual inspection of values

when viewing a document’s source code.

4. DEMONSTRATION AND ANALYSIS
We evaluated our tool using Alexa’s top 25 U.S. websites and

found, through manual confirmation, that it accurately measured

content elements (as defined in Section 3). We placed a corpus of

screenshots and archived websites online at

http://www.rumint.org/gregconti/publications/awe2.zip. Figures 4

and 5 demonstrate how the tool works on two popular webpages

using the definition of content in Section 3. Thin blue rectangles

surround each content element and the figure captions list the

total number of pixels for each page.

As discussed above, it is possible to further subcategorize content.

Red rectangles surround a subcategory of content in Figure 5. We

modified, with permission, the code-base of Adblock Plus version

2.2.1, a popular open source ad blocker available at

http://adblockplus.org. Rather than blocking them as Adblock

Plus normally would, our modified version of Adblock Plus

labeled advertising elements using the technique discussed in

Section 3.4. Figure 5 demonstrates the ability of using external

tools to guide content classification and the potential of creating

subcategories of content to provide greater fidelity with webpage

research. Our Adblock Plus example also illustrates the power of

integration because our application can seamlessly adjust when

Adblock Plus updates its list of ad sites.

Our application currently has some restrictions which follow the

simplifying assumptions we made in building it. For example, we

excluded CSS background images from our definition of content

because they frequently overlapped multiple elements and are

http://www.rumint.org/gregconti/publications/awe2.zip
http://adblockplus.org/

rendered in the browser through style rules rather than HTML

elements. This is evident in Figure 4 where the Amazon logo

image, implemented as a CSS background-image, has no

bounding rectangle. CSS background images were the single

dominant challenge that our application ignored, but a more

robust algorithm could improve upon this shortcoming. Despite

its limitations, Figures 4 and 5 demonstrate the potential power

our application offers in providing a greater fidelity in analyzing

and comparing webpages.

5. RELATED WORK
Our application does not replace traditional usability and user

experience evaluation techniques, but potentially enhances them.

Automated website measurement tools have partially resembled

our own efforts. Commercial and open-source software as well as

research tools provide an automated means to accomplish certain

aspects of our tool. Ivory et al developed an automated tool that

functions like a web browser and calculates 11 page-level metrics

useful in comparing webpages and designs [3]. Those metrics

provide a statistical analysis of webpage content like word count,

body text %, page size in bytes, image % in bytes, and image

count. This work most closely resembles our own, but our use of

an existing browser provides a more accurate measurement

platform. Other software programs allow users to manually

measure pixels on a screen between two points, and several

browser extensions (add-ons) allow users to manually highlight a

single element in the browser. Frietas developed a Firefox

extension that allows users to manually measure any element in

pixels [4] and Firefox’s DOM and Style Inspector tool assists in

identifying elements on the screen; but neither tool can measure

multiple elements automatically.

6. CONCLUSION AND FUTURE WORK
There are many useful metrics for comparing webpages on the

World Wide Web, but they measure a page holistically, fail to

measure pages within the context of the message that users see, or

use methods that are not automatable. Our technique provides a

means to increase the fidelity of webpage analysis and introduces

a novel metric focused on the number of pixels that certain

elements on a page occupy in a browser window. This method is

customizable, provides user context in measuring the pixels that

users actually see in a popular web browser, and is fully

automatable. Several feasible extensions of the application will

suit this technique for many different research objectives.

Promising future research areas include subcategorization of

content, integration with other external tools, and general

improvement of the application. We have demonstrated the utility

of classifying content into various categories in Figure 5. Content

may be more accurately measured through a content-specific

weighting scheme, such as through element opacity.

Measurements may also be taken over time to capture the dynamic

nature of webpages. Finally, more accurate measurements

demand the lifting of several simplifying assumptions discussed in

Section 3. Our technique can potentially provide greater fidelity

in research which may lead to increased understanding of

common practices on the web and improved user experiences. As

an automated tool, our application has the potential to improve

search engine rating schemes and inform users of global trends

with respect to certain elements on a webpage. Finally, a

promising area of future work includes opportunities for a more

general application of our metric as an automated tool for other

purposes.

Figure 4. A screen capture of the Amazon homepage using our

application to measure page content as defined in Section 3.

There are 418,641 content element pixels out of 633,270 total

pixels in this browser window.

Figure 5. A screen capture of the NY Times homepage using

our application to measure page content as defined in Section 3

and a subcategory of content as discussed in Section 3.4.

There are 361,571 content element pixels out of 633,270 total

pixels in this browser window. 94,278 of the content pixels are

the subcategory of advertising elements that Adblock Plus

identified (shown with red rectangles).

7. REFERENCES
[1] Andrew Jaquith. 2007. Security Metrics: Replacing Fear

Uncertainty, and Doubt. Addison Wesley, 2007.

[2] Wladimir Palant. 2007. Adblock plus Firefox extension.

Available from http://adblockplus.org/en/firefox

[3] Melody Y. Ivory, Rashmi R. Sinha, and Marti A. Hearst.

2001. Empirically validated web page design metrics.

Proceedings of the SIGCHI conference on Human factors in

computing systems, March 2001, Seattle,Washington, pp 53-

60.

[4] Kevin Freitas. 2011. MeasureIt Firefox extension. Available

from https://addons.mozilla.org/en-

US/firefox/addon/measureit/

The views expressed in this paper are those of the authors and do

not reflect the official policy or position of the United States

Military Academy, the Department of the Army, the Department

of Defense, or the United States Government.

http://adblockplus.org/en/firefox
https://addons.mozilla.org/en-US/firefox/addon/measureit/
https://addons.mozilla.org/en-US/firefox/addon/measureit/

