
EXPLORATIONS IN NAMESPACE:
WHITE-HAT HACKING ACROSS
THE DOMAIN NAME SYSTEM

By DAN KAMINSKY

t’s a fact that the larger the data set, the more difficult it is to update
any individual entry within it and the more likely an individual
record will become out of date. It’s from this observation that the
Domain Name System (DNS) was created to cope with the growing
lists of domain names (such as www.doxpara.com) that need accu-
rate mappings to Internet Protocol (IP) addresses (such as
209.81.42.254). Originally designed in 1983 by Paul Mockapetris,
then of the Information Sciences Institute of the University of
Southern California, DNS offers a scalable, hierarchal, distributed

approach to name resolution. DNS remains a core component of
the Internet, but something has changed over the years. As the Internet
has grown, attackers anywhere have become attackers everywhere, in part
because of DNS.

DNS cache scanning across a sample set of more than 500,000 name servers

revealed the extent of last year’s Sony rootkit infestation on client machines.

I
62 June 2006/Vol. 49, No. 6 COMMUNICATIONS OF THE ACM

COMMUNICATIONS OF THE ACM June 2006/Vol. 49, No. 6 63

My personal interest involves identifying and
reporting these security faults on a global scale. The
results have been surprising, even to me, considering
that I look at every kind of DNS-related traffic I can
access on the Internet; DNS is much more compli-
cated than I thought, and name servers most certainly
do not always tell the truth.

My scans for these faults have not been trivial.
Code is easy, politics is not, particularly when dealing
with organizations responsible for network infrastruc-
ture. But we cannot defend our networks if we are
blind to what they contain. DNS is a massive, dis-
tributed, shared worldwide resource. We must not
cede knowledge of it to those who wish to destroy it.
DNS is one of the few remaining pre-firewall-era
applications and may be the only one on the Internet
today against which administrators of firewalls refuse

to interfere. From a firewall perspective, the configu-
ration “problem” of properly securing DNS is not like
the configuration problem with the File Transfer Pro-
tocol (FTP). FTP uses a port-selection strategy not
used by other protocols; it is therefore only moder-
ately at risk from devices in the middle of networks
that seek to censor and alter traffic flows. More
important, FTP fragility problems are limited to FTP
transmissions.

On the other hand, DNS is a prerequisite service
for almost every network-enabled codebase in exis-
tence. When something breaks the domain-name-to-

Figure 1. Unexpectedly complex inter-server
forwarding relationships in the Domain Name System, Fall 2005

(data and visualization Dan Kaminsky).

64 June 2006/Vol. 49, No. 6 COMMUNICATIONS OF THE ACM

IP-address service provided by DNS, the result is that
random, highly visible services (such as email and
Web browsing) begin to fail. Time and again, it takes
so long for network administrators to trace the prob-
lem back to DNS—hindered by blocking libraries
and poor runtime debugging—that by the time the
problem is identified, the firewall vendor, rather than
DNS, is often blamed instead. Firewall vendors fear
inhibiting DNS in any way, while system administra-
tors tend to feel that DNS is more likely to break if
they touch it. So name servers chug on, providing
their services as they always have.

Minimal oversight from system administrators and
firewalls leads to other problems. For example, in
March 2005, a number of name servers started
returning bad data for Google servers. Attackers had
exposed the servers to a variant of what’s called a
Kashpureff attack. Named after the erstwhile Eugene
E. Kashpureff, whose zeal for alternative DNS top-
level domains in 1997 exceeded his fear of deporta-
tion and eventual prosecution by the U.S.
government. The Kashpureff attack on Google’s
servers involved sending more domain-name-to-IP-
address mappings than had originally been requested;
the name server would then cache these additional
answers alongside what had actually been requested.

What made this variant interesting to security pro-
fessionals was the fact that name servers are often not
set up to operate independently but can be config-
ured to run in fairly complicated trees and graphs that
query other nodes before escaping out to the DNS
root servers for resolution services. This preference for
local nodes, called a “forwarding relationship,”
involves trusting that whoever you were speaking to
will pass you only appropriate data (see Figure 1).

The new attack involved the Berkeley Internet
Name Domain (BIND) (version 8) implementation
of the DNS protocols, which didn’t trust Kashpureff-
polluted packets but would forward them unfiltered
anyway. Other name servers (Microsoft DNS was tar-
geted, though others were vulnerable) would trust
anything forwarded to them. The attackers had
revived an old technique by identifying and exploit-

ing it in new architectures.
Resurrecting old techniques is common in today’s

security environment; why find new bugs, when the
old ones can be used to locate architectural mistakes
programmers are likely to make. Regression testing
for security flaws needs more work to ensure that
already-identified security flaws do not make their
way into new software applications. Luckily, the
attackers didn’t hit too many name servers. But how
much damage could they have done had they suc-
ceeded on a global scale?

CHALLENGING SCAN AND NOTIFY

Two things are not generally recognized by network
administrators and governance bodies as being part
of the status quo of operating on the Internet:
servers will be scanned, and users who detect servers
that appear to have been compromised can notify
anyone else of their discovery.

Computer security professionals generally know
that the average lifespan of an unpatched system on a
network without a firewall can be measured in min-
utes. Less known is that at least one Class A network
(16 million IP addresses) is constantly receiving
5MB/sec of traffic. But there’s nothing there, because
no machines reside at any of the 16 million addresses,
and the addresses should not receive any traffic. From
this we can surmise that unknown individuals and
organizations are continually scanning the Internet’s
entire IP address space. Since “white hat” hackers do
not break into systems as a matter of course, and sys-
tems are indeed being broken into en masse, we know
that the “black hats” are largely doing the scanning.
Whereas black hats ought not to have better intelli-
gence than we do, white hats must be able to scan at
least as effectively as their black-hat counterparts.

When it comes to notification, things get interest-
ing, because the great advantage white hats have over
black hats is they don’t have to hide. Indeed, on my
own scanning node (deluvian.doxpara.com), you’ll
even find my cell phone number. Because we white
hats have no fear of being caught, we don’t need
stealth. White hats should push this advantage as

THE INTERNET DOES NOT ROUTE NAMES, AND SONY’S
ROOTKIT DID NOT HARD-CODE IP ADDRESSES. THE LACK

OF HARD-CODED IP ADDRESSES MEANT (AHA!) DNS
LOOKUPS WERE REQUIRED FOR THE ROOTKIT TO

CONNECT BACK TO A MASTER SERVER.

much as possible. Not only would you be notified by
them that your scans have been noticed but that your
servers and network hardware may have been broken
into.

Black hats have long histories of breaking into sys-
tems, recruiting them for information gathering and
using them as stepping-stones to exploit other third-
party systems. A common line of communication
involves an administrator who notices a scan from an
external network, then informs the network’s admin-
istrators that they have a compromised machine;
remediation can then begin. Notification is part of the
status quo.

My scan-and-notify proposition involves a caveat.
While both scans and notifications are already taking
place on the Internet, scanners generally do not notify
the servers they are scanning, and notifiers are gener-
ally not also scanners. I intend to change the role of
scanners to help improve large-scale Internet security.
The security community’s advisory model—in which
recipients are obliged to evaluate their networks
against the constraints documented in the advisory—
doesn’t work well. It also hasn’t helped that it’s become
so difficult to acquire tools capable of verifying vul-
nerabilities.

Would it help to have site-customized advisories
able to state that not only is there a vulnerability but
that the scanners can see that your site is affected? Pos-
sibly, so I thought it would be worthwhile to find out.
In 2005 after setting up a suitably uncloaked scanning
host (with custom whois entries, reverse DNS, and
my cell phone number being available via HTTP) I
began trying to document the extent that other DNS
servers across the Internet were vulnerable to a Kash-
pureff attack.

SHEDDING LIGHT

My first step in the scan-and-notify process was to
sweep the IP space. I modified my high-speed TCP
service scanner, Scanrand (www.doxpara.com, part
of the Paketto Keiretsu suite of tools for manipulat-
ing TCP/IP networks), to emit User Datagram Pro-
tocol (UDP) packets on the standard DNS
port—53. Although TCP scanning could have
detected servers, many name servers fail to respond
on TCP/53, suggesting a UDP approach was war-
ranted. But which packets should be sent? Unlike
TCP-based services, applications that expose their
services over UDP must participate in announcing
their presence. The message delivered to them must
be understood by the DNS server, and the server
must emit a response. So a DNS query is required,
one that would be understood and responded to by
any host receiving the request, preferably without

having to travel elsewhere in the DNS hierarchy. I
then considered how to construct this query, ulti-
mately using localhost (127.0.0.1), a special IP
address machines use to refer to themselves.

I constructed a DNS PTR (pointer) lookup query
for 1.0.0.127.in-addr.arpa. It asked the DNS server to
return the domain name associated with a given IP
address, a process also known as a reverse lookup. In
theory, each server that receives the request should
return “localhost” as a reply. In most cases, this was
exactly what occurred in response to my query, but in
a surprising number of cases the servers leaked addi-
tional information by announcing themselves as local-
host.foo.com, where foo is the name of the domain
associated with the DNS server. I detected other
response patterns as well. One conclusion I made
while doing these scans was that when scanning for a
particular Internetworked application, domain-spe-
cific probes can yield more data than might otherwise
be expected.

Another result of my scans was that I witnessed a
second class of DNS traffic. I configured my DNS
server to allow anyone attempting to lookup the IP
address for my scanning computer (deluvian.dox-
para.com) to receive a name directing this person to
more information, including scanning.please-browse-
to.http.deluvian.doxpara.com. Approximately 35,000
individual servers took me up on this request, many
immediately after I probed their related networks. It is
likely that automated systems—some designed for
forensic logging—were announcing their presence to
me, despite my being an unauthenticated party. I saw
at least one packet from a Class A network from
which I had never seen anything else. But more prob-
able was that some of this traffic was coming from
active forensics personnel trying to determine what I
was up to.

I initially found nine million hosts, not all willing
to keep talking to me. As my work progressed, I
selected a 2.5-million-node subset for manageability
purposes and extracted name-server version data from
each host using Roy Arends’ excellent DNS finger-
printing software (www.rfc.se/fpdns/). What
remained was the difficult part of my search for
servers still vulnerable to a Kashpureff attack—detect-
ing and documenting forwarding interrelationships
among DNS servers.

PEERAGE

All known mechanisms for reasonably detecting
interrelationships among name servers rely on the
fact that when one name server forwards a request to
another name server, this other server ends up with
the response in its cache. Luis Grangeia, a systems

COMMUNICATIONS OF THE ACM June 2006/Vol. 49, No. 6 65

and network auditor, wrote in [1] that an obscure
mode of DNS, accessible via the Domain Internet
Groper tool, allows cache contents to be probed
nondestructively. Therefore, cache contents can be,
at least to some degree, publicly monitored.

This mode of DNS offered three approaches for
identifying interrelationships. First, I could issue a
normal (but unique) query to one host, then nonde-
structively see if the results from that query showed
up anywhere else. If, for example, I had asked Alice to
retrieve data for me, and Bob ended up with that
data, I could be pretty sure Alice and Bob were talk-
ing to each other. The problem was we weren’t just
talking about Alice and Bob; I wished to test millions
of name servers on the Internet—an O(N

2
) solu-

tion—meaning my approach would quickly become
computationally infeasible.

An interesting variant of this approach is to recog-
nize that old data can be differentiated from new data;
it’s possible to know to the second when a given
record entered a particular host. We are able to deter-
mine such information because each record is associ-
ated with a Time To Live (TTL) value describing the
number of seconds until the data is considered stale.
Each node in the DNS is specified to decrement
TTL, so it’s trivial to subtract the original TTL from
the retrieved value and determine the precise time a
given value entered the cache.

This approach also had trouble dealing with com-
plexity; for example, to scan more than a single node
per second, the scanning machine would have to con-
stantly shuffle its scan space, then identify relation-
ships that show up at matching offsets, no matter what
the order of the scan may be. This processing overhead
is doable but can be prohibitively complicated.

I eventually implemented a more straightforward
solution. In DNS, I can control parts of the name-
space; if anyone in the world tries to look up some-
thing inside the doxpara.com domain, the packets
come to me. So, I began probing DNS servers by ask-
ing them to look up a unique name, then monitored
who came to me to service that request. If, for exam-
ple, I asked Alice to look up something, and Bob came
to my server hat in hand with a lookup in tow, that
would mean Alice was talking to Bob. I used this sim-
ple solution to detect several forwarding relationships:

• 13,000 Microsoft DNS servers forwarding to
BIND8;

• 18,000 BIND9 forwarding to BIND8; and
• 230,000 total name servers (almost 10% of the

detected sample set) forwarding to BIND8, in
direct contravention of the security disclaimer on
the BIND home page. (Apparently, a very visible

security advisory on BIND’s Web site wasn’t
enough for a number of people to properly config-
ure their machines.)

This probing produced yet another inexplicable
result. After generating two kinds of information—
the type of nameserver software run by each node and
edge information, or which nameservers were for-
warding to which other nameservers—I tried to gen-
erate the full graph for the analyzed subset of the
global DNS architecture. Building the graph, I mainly
expected to find clusters of four or five nodes in some
sort of cooperative arrangement for DNS lookups.
This was indeed the case for the 40,000 networks I
had probed, but I then found an anomaly consisting
of 220,000 nodes, 330,000 edges, and a depth of 20.
In one case, a DNS request sent to one particularly
interesting server yielded traffic from one of a thou-
sand other systems. I am still analyzing this result.

LIVE IN YOUR WORLD; GET PWNED
1

IN OURS

During the late 1990s, the term “Halloween docu-
ments” referred to embarrassing leaks from
Microsoft. More recently, during Halloween 2005,
Mark Russinovich, author of a number of advanced
Windows utilities, highly regarded technology blog-
ger at www.sysinternals.com, and probably one of
the top five Win32 hackers in the world not working
for Microsoft, documented how in the development
of his RootkitRevealer tool, he’d found that his own
system was infected by a rootkit. A rootkit is software
that allows malicious applications to operate stealth-
ily. He’d traced the matter back to a Sony CD he’d
purchased; using “sterile CD” software from the
U.K.’s First4Internet, a commercial provider of digi-
tal rights management (DRM) solutions
(www.first4internet.com/), Sony had caused an inde-
terminate number of PCs to lose some of their abil-
ity to rip CDs into applications like Apple’s iTunes or
burn their own mix CDs.

This software cloaked itself using mechanisms so
deep in the black-hat playbook it could be referred to
as a rootkit. Indeed, black hats soon began borrowing
access to its cloaking functionality to evade antivirus
and antispy software. Worse, the initial uninstaller
provided by Sony removed only the cloaking and not
the DRM software—hardly the total removal users
were looking for. It became clear to me that this code
was designed to expect the loss of consent to execute.
At some point, the rootkit developer must have asked
himself whether users would want to get rid of it. The

66 June 2006/Vol. 49, No. 6 COMMUNICATIONS OF THE ACM

1Pwned (Owned) is Internet slang for gaining root privileges on a computer by exploit-

ing a security vulnerability (see en.wikipedia.org/wiki/Pwned for more information).

answer, it seems, was “not if they don’t
know it’s running.”

Such behavior from a company like
Sony posed a problem for the security
community and everyone else. It’s diffi-
cult to fight skilled hackers out for fun.
It’s difficult to fight experienced, finan-
cially motivated criminal operations. But
fighting a billion-dollar, corporate-
funded hacking operation is impossible.
Even the most experienced infantry will
fall to aerial bombardment, and with
four million CDs being sold directly to
consumers, these CDs were a bombard-
ment we (security experts throughout
the Internet) hadn’t yet noticed; it took
six months and Mark Russinovich to
detect the presence of the rootkit. Where
were the security vendors? Only Sony
knew how many systems were infected.
How could the security industry respond
to something it could not measure?

I needed hard data that would allow
me to measure the impact of the infec-
tion. Traffic dumps from rootkit-
infected systems showed network
connectivity to
connected.sonymusic.com. While I did
not expect traffic to this domain to be
only rootkit-related, other researchers
told me that updates.xcp-aurora.com
had been identified as another suspicious
domain.

The Internet does not route names,
and Sony’s rootkit did not hard-code IP
addresses. The lack of hard-coded IP
addresses meant (aha!) DNS lookups were required
for the rootkit to connect back to a master server. The
lookups would execute, the responses would cache,
and I could use the DNS cache snooping method [1]
across my entire sample set to estimate penetration
levels by the Sony rootkit. However, using this tech-
nique, I was unable to get per-host results, but the
per-network results I could get would give me an idea
(at least) of the scale of the rootkit infections. My
analysis showed more than 500,000 name servers
responding to nonrecursive queries with one of the
two monitored names. This was rather more than I
expected.

Over the next few days, I weeded out false positives
through two approaches:

• Many servers look up data recursively even if
they’ve been instructed not to. Originally, I found

almost a million hosts
responding; due to the fault, I
had to eliminate 350,000; and

• Some servers lie. Captive por-
tals, commonly used in wire-
less portal applications, intercept all incoming
DNS queries and return with links to themselves.
Along with many recursive lookers, these portals
were easy to detect, as their TTLs were always
equal to some value divisible by 100.

I ultimately found that more than 556,000 name
servers had returned names related to the Sony
rootkit, with 76% of the servers returning both con-
nected.sonymusic.com and one of the First4Internet
addresses. Geolocation allowed me to identify
infected nodes in 165 countries around the world (see
Figure 2). It was clear that security researchers had a

COMMUNICATIONS OF THE ACM June 2006/Vol. 49, No. 6 67

Figure 2. Geolocation
of Sony rootkit

infection for Europe
(top) and the

U.S. (bottom),
November 2005.

new weapon—DNS—in the war against malware
and that Sony had been its first target.

Even so, matters were still not clear. For example,
connected.sonymusic.com was in fact an address used
for almost eight years by Sony Enhanced CDs (but
not rootkitted). Only gawkers and uninstallers went
to the First4Internet sites; the rootkit itself would not
natively go to that address. Security experts around
the world were concerned (despite the CDs suppos-
edly being sold only in the U.S. and Canada). Luck-
ily, a breakthrough emerged that allowed new, much
more accurate scans. In it, connected.sonymusic.com
would issue an HTTP redirect to another site—
xcpimages.sonybmg.com—but only in situations
where an infected CD was inserted into a computer.
Following these redirections yielded far more accurate
data; for example, I found that more than 350,000
sites in 135 countries were linking to the updates.xcp-
aurora.com site. While smaller than the original data
set, I completed these new scans a month later
(December 2005) after significant press and Sony’s
own genuine efforts to manage the repercussions of
the rootkit infections—for which it deserves credit
and respect.

I still wanted to know whether the rootkit was a
small-scale event or one of, perhaps, global magnitude.
For 350,000 or 550,000 name servers to be so
affected, the best available data suggested that Sony
had indeed caused an event of worldwide proportions.

CONCLUSION

Hacking requires a mind-set that seeks to know not
what a system is intended for but what it is capable
of doing. Hacking is not limited to networks or to
those who call themselves hackers; every program-
mer finds ways to repurpose old tools. White hats
will never cede the creative ground to black hats.
The greatest white-hat advantage—no need for
stealth—exposes creative territory their adversaries
cannot match. The results of using DNS as a global
measurement platform can now be explored for the
first time.

References
1. Grangeia, L. DNS Cache Snooping for Fun and Profit. White paper, Feb.

2004; www.rootsecure.net/content/downloads/pdf/dns_cache_snoop-
ing.pdf.

Dan Kaminsky (dan@doxpara.com) is a senior security consultant
at DoxPara Research, Seattle, WA.

© 2006 ACM 0001-0782/06/0600 $5.00

c

68 June 2006/Vol. 49, No. 6 COMMUNICATIONS OF THE ACM

