
A Visual Study of Primitive Binary Fragment

Types

Gregory Conti∗, Sergey Bratus, Anna Shubina†,
Andrew Lichtenberg‡, Roy Ragsdale, Robert Perez-Alemany,

Benjamin Sangster, and Matthew Supan∗

July 4, 2010

Abstract

We argue that visual analysis of binary data objects such as data
files, process memory, and file systems presented as grayscale graphical
depictions helps distinguish structurally different regions of data and thus
facilitates a wide range of analytic tasks such as fragment classification,
file type identification, location of regions of interest, and other tasks that
require an understanding of the “primitive” data types the objects contain.
We believe that, due to the high visual value of this data presentation,
such visual analysis is an invaluable help in low-level study of binary data
objects and in understanding their structure, and that tools for such visual
analysis belong in the toolkit of every researcher studying binary data.

In an effort to facilitate development of such tools, this paper presents
a visual study of binary fragments created by common kinds of software,
and offers a descriptive taxonomy of primitive binary fragments and their
graphical depictions. Although significant research has gone into the study
of binary fragments, the depth and breadth of this study to date has been
limited. Thus the primary contribution of this paper is an extensible
and visual taxonomy to assist and inform researchers conducting low-level
analysis of binary objects.

1 Introduction

Binary data is central to the modern computing paradigm and exists in large,
complex objects such as process memory, file systems, network flows, as well
as in data and executable files. In many cases, however, these objects are
∗West Point
†Dartmouth College
‡Skidmore College

1



heterogeneous, consisting of many dissimilar elements created by commonly
used software libraries and processes or algorithms (such as various forms of
compression). We call these dissimilar elements primitive binary fragments.

Even though the variety of data types is theoretically limitless, in practice
they mostly get created by a limited number of popular tools for an equally
limited number of consuming programs. Thus most fragments of complex binary
objects we are likely to encounter can be categorized into a number of recursively
refined categories, a taxonomy.

To use a biological metaphor, even though there is no limit to the kinds of
possible living organisms, nor to their ability to imitate each other to confuse
the observer, in reality the ones we encounter can in fact be usefully classified
into species, families, etc., based on the common visual features they exhibit. In
this paper, we set out on a journey to define and study the prevalent “binary
species”.

Primitive binary fragments are typically homogeneous, irrespective of poten-
tial header and footer values. This property is important when analyzing a
fragment where the header and footer may be unavailable, untrustworthy, or
unnecessary. Examples of fragment types include compressed MPEG-1 Audio
Layer 3 audio, AES encrypted data, US-ASCII text, Intel x86 opcodes, Basic
Latin Unicode, Base64 encoded binary data, C++ source code, fixed length
data structures, and image bitmaps, among many others.

Forensic analysts, security researchers, and reverse engineers routinely deal
with tasks that require understanding of the various primitive fragment types
contained within large binary objects (examples include malware detection, file
fragment reassembly, file type identification, binary fragment classification, and
the location of regions of interest such as cryptographic keys). Conversely, ignor-
ing the distinctions between diverse primary types is likely to be unhelpful – for
example, researchers attempting to develop statistical signatures for a complex
container file format, such as a Microsoft Word 2003 document, or an executable
format like Windows PE or Linux ELF are less likely to be successful if they
treat the file as a single homogeneous object rather than a complex object com-
posed of diverse primitive fragments. We argue that such primitive fragments
are more amenable to signature matching, data mining, machine learning, and
statistical techniques, and can be analyzed more accurately than conglomerates
of such fragments.

The primary contribution of this paper is the presentation and analysis of a
detailed, visual taxonomy of primitive binary fragment types. We can not and
do not claim that our taxonomy is complete. There are nearly infinite ways to
structure, manipulate, and transform binary data that make a complete taxon-
omy well beyond the scope of a single paper. For example, a digital photograph
could be saved using a variety of image formats and compression algorithms,
encrypted using one of dozens of possible encryption schemes, and finally en-

2



coded using one of several methods for transmission across a text-based network
protocol. The end result is an exponentially increasing number of possibilities,
even in this simple scenario.

To appropriately scope the problem, we chose primitive data types that
are commonly encountered. We feel this approach is reasonable. Rather than
attempt to catalog every conceivable sequence of transformations and possible
outcomes, we instead include only those that are likely to be encountered in
practice. However, our taxonomy is a extensible, and can be extended as new
data types gain prominence.

Note that our definition of fragment types does not include the notion of
data types found in common programming languages, such char, int, long,
float, and double. Whereas primitive binary fragments may consist of these
low-level building blocks, our taxonomy does not address such atomic elements
explicitly.

Similarly, it is not always possible to say whether a binary fragment that
is comprised solely of a certain primitive type contains just one item of that
type or is comprised of multiple adjacent items of the same type. In some cases,
for example, when header or footer information is available, we can be sure of
the boundaries between items. In other cases, without information about the
structure of the file, we cannot find out if the data fragment is a concatenation
of items of the same data type. For example, a text fragment without visible
structure might well be a concatenation of text fragments.

In addition, splitting binary data into minimal building blocks does not
always help to analyze the data in a meaningful way. For example, minimal
valid text data fragments are the size of one character and can naturally occur
in non-text data. The UNIX utility strings, which finds printable character
sequences in files, by default prints out strings that are at least 4 characters
long. Even with this length restriction, the output of strings on non-text files is
typically full of strings that are clearly not text data. The above considerations
led us to define a primitive binary fragment as the longest fragment of binary
data that may constitute a single instance of a certain primitive type, whether
or not this instance is a concatenation of multiple items of that data type.

This paper is organized as follows. Section 2 places our research in the field
of related work. Section 3 presents our taxonomy. Section 4 provides additional
analysis, conclusions, and promising directions for future work.

2 Related Work

Researchers have studied binary fragments in numerous contexts, including
forensic analysis, reverse engineering, fuzzing, visualization, and binary object
mapping, among many others.

Areas of study within computer forensics include file type identification, file

3



carving, and file fragment classification and reassembly. File type identification
research seeks to determine the type of file without reliance on the file extension
and magic number, the fixed byte sequence often embedded at the start of
files to indicate file type. For example, Li used complete and “truncated” files
(truncated files were created by extracting the file’s first 20, 200, 500, and 1000
bytes) and 1-gram analysis to identify the file’s format [1]. Karresand used an
algorithm based on the rate of change of byte values to classify 51 different file
formats [2]. McDaniel used byte frequency analysis and byte frequency cross-
correlation analysis to identify files without regard for their metadata [3]. Hall
used a sliding window to take 100 measurements each of Shannon Entropy and
“compressibility” to identify file types [4].

The areas of file carving and file fragment reassembly are also related to
our work. Veenman used statistical techniques to classify disk clusters by file
type in order to facilitate file recovery [5]. Erbacher used a sliding window al-
gorithm to visually examine the internal structure of seven different file types,
.doc, .exe, .jpg, .pdf, .ppt, .xls, and .zip. Erbacher’s work points to the di-
verse internal structures contained within complex file formats [6]. Moody also
used a sliding window algorithm to study the internal structure of complex files
and introduced the idea of base data types, i.e. file formats that can reason-
ably be considered to consist of the same data type, such as .jpg and .txt [7].
Shanmugasundaram used context models to sequence and reassemble document
fragments including system logs, source code, executable code, binary data files,
unformatted text, and random text [8]. Richard studied the performance of the
Scalpel and Foremost file carvers, which are based on databases of header and
footer signatures [9]. Finally, Calhoun studied algorithms that classify .jpg, .gif,
.pdf, and .bmp files based on longest common subsequences and Fisher’s linear
discriminant [10].

Importantly, Roussev and Garfinkel explicitly mention the need to under-
stand the complex internal structures of popular file types including .pdf, .doc,
and .zip. They included a study of 131,000 valid pdf files and clearly illustrated
that these files regularly contain a wide variety of internal data objects. They
do not however attempt to create a generalized taxonomy [11].

Researchers have also explored the identification of fragments of a single
type contained within a larger binary object. For example Shamir located cryp-
tographic keys in disk images by using a 64-byte sliding window algorithm and
counting the number of unique bytes [12]. Stolfo used n-gram analysis to detect
documents containing malicious software [13].

Reverse engineers are concerned with the internal structures found within
files, particularly executable files. Typical tasks include understanding the be-
havior of a given compiled application by examining its disassembly, and modify-
ing or disabling certain behaviors. Many reverse engineers seek to identify major
sections within executables such as .text (machine instructions), .data (initial-
ized data), and .bss (uninitialized data) in Windows PE executables. They also
seek to identify major programmatic structures within the disassembly, such as

4



loops, logical decisions, and jumps.

Advanced fuzzers target low-level structures contained within binary objects,
particularly those structures that are provided as input to an application or net-
work service. By modifying these sources of input data in a brute force fashion,
fuzzers attempt to identify software vulnerabilities. An excellent overview of
the field was provided by Sutton [14].

Little recent work has been done in the visualization of low-level binary data,
with one exception. Conti studied the use of a byteplot visualization to view
binary objects and created an interactive system for exploration [15, 16]. He
did not however develop a taxonomy of primitive fragments. Note that we use
his open source binvis tool, modified to produced grayscale output, to create
the fragment images included in this paper [17].

The common trend in the above work is that each area of research explores
the internal structure of binary objects but is hindered by the lack of a compre-
hensive binary fragment taxonomy. Thus the novelty of our work springs from
the creation of a taxonomy of binary fragment types along with accompanying
graphical depictions to complement and support future binary data analysis and
research.

3 Fragment Taxonomy

There are many ways one could organize a taxonomy of binary fragments. We
have chosen to build the taxonomy, see Table 1, based on common types of
source media and common ways this media may be encoded, encrypted, or
compressed. To determine appropriate base media types we studied RFC 2046,
Multipurpose Internet Mail Extensions (MIME) Media Types [18]. RFC 2046
provides five discrete top-level media types: text, image, audio, video, and ap-
plication (i.e. typically executable binary data or data designed to be processed
by an application). We also reviewed the registered basic media content types
cataloged by the Internet Assigned Numbers Authority, the binary template
archive provided by Sweetscape Software, the FILExt file extension database,
and numerous file format specifications and Object Linking and Embedding
documents [19, 20, 21].

These reviews were the foundation of the design of the taxonomy. However,
one of the challenges when constructing a taxonomy of binary fragments is
how to cope with the possibility of the near infinite number of permutations of
encoding, compression, and encryption that are possible, at least theoretically.
To account for this issue, we have chosen to include generic categories for each
of these three transformations. We have also included categories for random
number sequences and repeating values (such as the padding used to align a data
structure to a page boundary). Finally we have included an “other” category
to capture fragment types not included elsewhere in the taxonomy.

5



Table 1.  Taxonomy of Primitive Binary Fragment Types 
 
  Major Category  Minor Category  Subcategory  Notes 

C 

Python 

JavaScript 

programming 

language source 

code 

... 

Typically encoded in US-ASCII. May alternatively 

be grouped by compiled and interpreted languages. 

English 

Russian 

written language 

...  

Typically encoded in US-ASCII, and more recently, 

Unicode.  Further variants include all upper and all 

lower case characters.  

LaTeX 

HTML 

XML 

Text 

markup 

language 

... 

Some markup languages may encapsulate other 

binary fragment types, such as JavaScript within 

HTML and binary images in XML.  We recommend 

treating such embedded objects as distinct types. 

uncompressed  bitmap 

LZ77 / Huffman  

JPEG 

Image 

compressed 

... 

Images are commonly encoded using 2n bits per 

pixel, where n=1, 2, 4, 8, 16, 24, or 32.  The process 

of generating an image may generate associated data 

structures, such as image headers and palettes.   

uncompressed  PCM  Commonly stored in the .wav file format. 

MPEG-1 Audio 

Layer 3 

Vorbis 

Audio 

compressed 

... 

MPEG-1 Audio Layer 3 is commonly referred to as 

mp3.  Vorbis is the lossy audio compression 

commonly paired with the Ogg container format. 

uncompressed  Full Frame  Infrequently used.  Stored in the .avi file format. 

MPEG-4 

WMV 

Video 

compressed 

... 

The video class may include interleaved image and 

audio information. 

UPX 

ASPack 

packed 

executable 

... 

UPX and ASPack do not list their specific 

compression algorithm(s), which might be preferable 

to include in the taxonomy.   

native  16 bit real mode x86, 32 bit protected mode x86…  

This category could be extended to include processor 

type and specific modes. 

machine code 

virtual  An example is Java bytecode. 

fixed length  Examples include some arrays, databases, log files. 

Application 

data structure 

variable length  Examples include some stacks, heaps, pointer tables, 

and database files.  pcap format packet captures. 

atmospheric noise 

lava lamps 

high quality 

random 

... 

Atmospheric noise and patterns in lava lamps are 

just two of many techniques that generate random 

numbers, with varying degrees of success. 

Linear Feedback 

Shift Register 

Mersenne Twister 

Random 

pseudo random 

... 

Pseudo random sequences appear random under light 

scrutiny, but are actually deterministic. 

AES 

Blowfish 

symmetric 

... 

RSA 

ElGamal 

Encrypted 

asymmetric 

... 

Encryption algorithms may be further categorized 

based on their input parameters, such as key length, 

and possibly the entropy of the plaintext data.  

Encryption is commonly applied to virtually every 

category in the taxonomy. 

RLE 

LZW 

Other 

Compressed 

 

... 

Compression is commonly used on virtually every 

category in the taxonomy, except those that are 

already compressed or encrypted.  

Base64 

uuencode 

Other  

Encoded 

 

... 

Encoding is commonly used to convert binary 

objects to US-ASCII byte values for use on text 

based network protocols, but is also used in many 

other ways. 

Repeating Values  A single value of one or more bits that is repeated 

regularly.    

Binary 

Fragment 

Other  An unforeseen or newly created fragment type. 

 

6



Figure 1: Byteplot visualization from a Windows thumbs.db file depicting signif-
icant structural differences between header information and compressed image
data (seen as white noise).

To illustrate primitive binary fragment examples, we have included images
created using the binvis tool’s byteplot visualization. The byteplot visual-
ization displays byte sequences one byte per pixel. Pixel colors are rendered
as a grayscale, where a byte value of zero is black, a byte value of 255 is pure
white, and other values are intermediate shades of gray. The top left pixel of the
byteplot equates to the first byte of the fragment being displayed. The second
byte in the fragment is plotted on the top row in the second column. Subsequent
values are plotted in sequence, left to right, until the end of the row is reached,
and plotting continues at the leftmost column of the row immediately below.
We believe the byteplot technique is a useful means for intuitively interpreting
many disparate types of binary structure.

We made other design decisions when constructing the taxonomy, including
separating data and metadata. For example, many image file formats include a
header structure, which describes the image it contains as well as the values for
the image. Figure 1 depicts a byteplot of a portion of a Windows thumbs.db
file. Two compressed images (seen as white noise) are visibly distinct from
the noticeably structured header information preceding each. Intuitively, we
believe that separating data from metadata makes sense, as the structure of
each of these regions is often quite different.

Another design decision we faced was whether to assume a theoretical min-
imum fragment size. We chose not to do so. Fragments should all belong to a
fragment class, even if a given fragment’s size might preclude accurate classifica-
tion using existing techniques. We believe this is an important concept; our lack
of ability to accurately classify an unknown binary sample, for example confus-
ing a high entropy encrypted fragment with a random number sequence, does
not negate the fact that the fragment is actually encrypted data. Ultimately,

7



we believe it is useful to seek to categorize all types of binary fragments. In do-
ing so, we may highlight areas meriting future research, such as the automated
classification of high entropy fragments. The sections following Table 1 describe
categories and subcategories in the taxonomy.

3.1 Text

The text category exhibits tremendous diversity. Ethnologue, an encyclopedic
reference which catalogs the world’s languages, currently reports 6, 909 lan-
guages still in use [22]. Google offers their search interface in over 120 different
languages (including some artificial languages, e.g. Klingon). The latest Uni-
code standard supports more than 90 different alphabets [23]. We acknowledge
this diversity and structured our taxonomy to account for it. The primary sub-
categories of the text type include: written language, programming language
source code, and markup language. Each of these types is commonly encoded
using ASCII or Unicode and may be compressed or encrypted as well.

Figure 2: Example Text Primitive Binary Fragment Types

Programming Language Source Code - Programming languages, in our def-
inition, are the source code of programs written in common programming lan-
guages, such as C++, Java, Perl, JavaScript, and Python. Although similar to
written languages, they may exhibit different structural characteristics, such as
an increased frequency of certain punctuation characters. See Figure 2(a) for
an example of ASCII encoded C++.

8



Written Languages - We define written languages as the written forms
of communication used by humans, such as English, French, or Russian, and
possibly including artificial languages as well. See Figure 2(b) for an example
of ASCII-encoded English text. Note the high density of midrange gray pixels
due to printable ASCII byte values in the range of 32 to 126.

Markup Languages - Markup languages are used to annotate written lan-
guages in order to embed additional information. Examples include HTML,
XML, and LaTeX. Figure 2(c) depicts an ASCII-encoded HTML web page con-
taining English text, and Figure 2(d) illustrates Basic Latin Unicode. The ver-
tical banding is caused by the use of 16 bit values, where the most significant 8
bits are zero. Some markup languages allow embedded programming languages,
such as JavaScript in an HTML web page. For purposes of classification, we
consider these to be two distinct categories, programming language source code
and markup language. Another example is that of a Microsoft Word 2007 doc-
ument, which may contain a binary encoded image; both the XML document
and the image would be distinct primitive binary data types.

3.2 Audio, Image, and Video Media

Multimedia fragments are divided into three major categories: audio, image,
and video. Whereas there are common techniques for storing multimedia data
without compression, compression using a variety of algorithms is common.

Figure 3: Example Audio and Image Primitive Binary Fragment Types

Audio - Digitized audio is typically based on the sampling of a source
signal at a fixed number of bits per sample using an encoding algorithm. For

9



example, the Red Book audio CD standard includes two channels of 16 bit
samples taken at 44, 100 samples per second using Pulse Coded Modulation
(PCM) encoding (see Figure 3(a)). Because the data is not compressed, there
is significant structure present. Contrast this with Figure 3(b), which shows
the same song stored as MPEG-1 Audio Layer 3 audio. Due to the use of
compression, visible structure is noticeably absent.

Image - Image data is traditionally stored as a bitmap. Besides width
and height, a key feature is color depth, the number of bits assigned to each
pixel. Common color depths include 1, 4, 8, 16, 24, and 32 bits per pixel.
When visualized using the byteplot display, the fragment often can be recognized
as an image (see Figure 3(c)), but may appear distorted due to differences
in color depth and image dimensions between the byteplot and the bitmap.1

Bitmap images are frequently stored using compression algorithms, but may
be decompressed at run time for display by an application. Figure 3(d) shows
a byteplot of an image first compressed with the Lempel-Ziv-Welch (LZW)
algorithm for storage on disk, then decompressed and placed in process memory
for display to the user.

Video - We debated including video as an explicit category in the taxonomy,
as video can be considered just a sequence of still images. In practice, however,
there are important differences between such sequences and actual video for-
mats. Video formats interleave audio and video content at the binary level,
and, in some cases, fragments from these regions are distinguishable as audio
and image primitive types. However, video formats do include novel charac-
teristics, such as key frames (frames where the complete image is stored) and
frames that contain only incremental differences from the key frame.

3.3 Application

Application fragments are divided into three main categories: machine code,
data structure, and packed.

3.3.1 Machine Code

Machine language instructions are commonly found within executable files, but
may be of particular interest when they exist within data files, such as a Mi-
crosoft Word document containing executable code. Machine code may vary
depending on the target processor as well as the compiler or assembler that
generated the code. We further categorize machine code into native (i.e. code
designed to run directly on a processor) and virtual (i.e. code designed as
an intermediate, and sometimes cross-platform, representation that is not run
directly by a processor). Figure 4(a) shows a machine code fragment extracted

1Bitmaps are commonly stored “upside down,” i.e., bottom to top in memory. To increase
legibility we have flipped Figures 3(c) and 3(d) upright.

10



Figure 4: Example Application Primitive Binary Fragment Types

from the .text section of a Windows PE file. Due to space constraints, we have
not further characterized machine code by its function, such as a logical block or
subroutine, nor by processor or compiler, but it may be appropriate to extend
the taxonomy to include these types and facilitate increased precision.

3.3.2 Data Structures

This category is extremely diverse. We define data structures as regions that are
used to store data in a binary format. Examples include strings tables, segment
tables, symbol tables, pointer tables, arrays, linked lists, stacks, etc. Members of
the data structure category may reside in memory, in files, or in network flows.
Because of this diversity, we have defined two broad subcategories, fixed length
and variable length, to distinguish between structures composed of fields (or
records) of varying or constant size. Figure 4(b) shows a table of incrementing
32 bit values extracted from a Word 2003 document; note the regular structure
of the fixed length fields. Figure 4(c) depicts a table of variable length strings
extracted from a Windows DLL.

3.3.3 Packed

Executable applications, especially malicious software, may also be converted
to a packed format, where the file is encrypted, compressed, or otherwise obfus-
cated. Typically, the packing process is reversed at runtime in order to allow the
program to execute. Figure 4(d) shows a UPX packed Windows PE file. Most

11



of the file (both code and data) now appears as a compressed region, however
an embedded icon and other structures are visible at the bottom.

Figure 5: Other Primitive Binary Fragment Types

3.4 Random

The random primitive fragment type is a sequence of random values and in-
cludes two subcategories, high quality and pseudorandom. High quality random
sequences, such as those derived from atmospheric noise, exhibit no discernible
pattern. Pseudorandom numbers may seem random, but are actually determin-
istic in nature. Both subcategories appear visually as white noise (see Figure
5(a)), but given a long enough sequence may be distinguished using statistical
techniques. Shorter random sequences, such as cryptographic keys, may also
appear in binary objects, but can be difficult to identify, particularly if they are
adjacent to other high entropy data.

3.5 Repeating Values

Repeating values are short sequences of byte values that are repeated a large
number of times. For example, some file formats align data regions to fixed
offsets by adding a sequence of null byte values until the desired offset is reached.
Such values are easily discerned in the byteplot as solid or highly structured
regions; see Figure 5(b).

12



3.6 Encryption, Compression, and Encoding

A useful way to think about binary fragments is in terms of generation and
transformation. Most of the previous categories included base content, which
was encoded in some fashion (US-ASCII, Unicode, PCM, opcodes mapped to
byte values, tables of binary coded decimal, and so forth). These binary rep-
resentations may be further transformed, sometimes repeatedly, in a variety of
ways including encryption, compression, and encoding. We have included some
common transformations directly in the taxonomy (e.g. compressed audio and
packed executables) but due to the near limitless possibilities we have also in-
cluded encrypted, other compressed, and other encoded categories. However,
some combinations are more likely than others. It is unlikely that one would
compress an already compressed file, but compressing data before encryption is
often recommended to reduce the possibility of unintended information disclo-
sure.

Encrypted fragments are the result of taking input data and transforming it
in some fashion so that only someone with special information may reproduce
the input. There are many grades of encryption, but most generate random-
looking byte sequences with no apparent structure, as seen in Figure 5(a). Com-
pression algorithms effectively remove redundant information in order to make
binary objects smaller. Although they generate fragments that appear visually,
and statistically, very similar to encrypted and random fragments, compression
algorithms were not designed to “resist” decompression or to serve as a random
number generator. For example, Figure 5(c) shows a binary fragment contain-
ing compressed data created by the DEFLATE compression algorithm; note
the visible structure it contains. Encoding transforms data in one format to
another, creating a data fragment of a different type in the process. Encoding
is commonly employed when digitizing analog data or converting binary data
to facilitate transfer over text-based protocols, and has a wide variety of other
uses. Figure 5(d) shows a fragment extracted from a Windows PE file that
was Base64 encoded. Base64 operates by converting every three bytes into four
printable ASCII characters, thus the underlying structure of the executable is
still visible.

The transformation process may significantly alter the nature of the source
data. As an example, a compression or encryption program may operate on a
single source data file, or it may take hundreds of disparate files and produce a
single output object, such as a ZIP archive or encrypted drive image. For future
extensions to the taxonomy, we believe it is important to consider, as precisely
as possible, how such transformations commonly take place, by taking into
account the primitive type (or types) of the source data, the specific algorithm
(including its exact input parameters, such as key length) as well as the specific
implementation of that algorithm.

13



3.7 Other

Finally, for completeness, we explicitly include the other top-level category to
allow for unforeseen primitive binary fragment types that do not otherwise fit in
an existing category. However, additional other categories may also be added
to subcategories, as needed.

4 Conclusions and Future Work

There is a tremendous amount of variety in binary fragments, and it is natural
to want to classify it in order to support research and analysis. Visualization
of binary objects further illustrates this diversity, highlights the fact that many
of the simplest appearing objects (such as the .bmp file format) are actually
composed of differing primitive types, and provides insight into structure that
is difficult to infer from purely numeric or textual analysis.

The primary contribution of this paper, a taxonomy of primitive binary frag-
ments, categorizes instances using a descriptive approach. Whereas there is a
near infinite number of possible fragment types, we have chosen to focus on
fragment types that are commonly used in practice. However, the taxonomy is
extensible and can be updated as needed to include new fragment types, both
found in the wild, and those that are purely theoretical. We believe it is impor-
tant to think more in terms of specific algorithms used for encryption, compres-
sion, and encoding (along with the possible variants of their input parameters)
and less about file formats. Many encryption, compression, and encoding im-
plementations (and file formats) provide numerous usage options. Each of these
permutations combined with varying classes of input data generates differing
resultant binary fragments types. Importantly, there is a distinction between
existence of a taxonomy and our ability to classify a given fragment without a
priori knowledge. For example, there are many ways to encrypt or compress
virtually any type of binary data, resulting in a high entropy object. Accu-
rately classifying fragments, particularly small fragments of these high entropy
objects, is an open problem. However, our ability to classify these fragments
notwithstanding, such fragments are very commonly encountered and merit rep-
resentation in the taxonomy, even if just to serve as a guide for the future work
of researchers.

For future work, we intend to study the classification of high entropy frag-
ments. We also suggest further study into generalized binary fragment classifica-
tion techniques, focusing on classifying as broad a range as possible of primitive
fragment types when conducting experiments. We also recommend considering
large binary objects to be heterogeneous structures composed of primitive bi-
nary fragments of different types, rather than assuming, by default, that such
objects are homogenous. We believe that the technique of breaking down large

14



binary objects into simpler parts, will be useful for fuzzing, file carving, re-
verse engineering, malware analysis, file type identification, and other forensic
and security analysis tasks, such as the low-level analysis of process memory
and file system images. Finally, we believe the taxonomy provides opportunity
for several important extensions, including in-depth exploration of encryption,
encoding, and compression algorithm variations.

Finally, in our taxonomy we did not assume the presence of an adversary who
deliberately attempts to make one binary fragment appear to be another. This
is entirely possible. For example, Erickson developed the dissembler program,
which converts executable machine code to a printable ASCII string [24]. This
year, Mason et al demonstrated the feasibility of creating executable machine
code using only opcodes that appear as English-like sentences when viewed as
printable ASCII [25]. Our focus in this paper was on establishing categories
that researchers are likely to encounter. As new dissemblance techniques are de-
veloped, we believe they should be considered for inclusion in a future taxonomy
of binary fragment types.

Disclaimers

The views expressed in this article are those of the authors and do not reflect the
official policy or position of the United States Military Academy, the Department
of the Army, the Department of Defense or the U.S. Government.

References

[1] W. Li, K. Wang, S. Stolfo, and B. Herzog. Fileprints: Identifying File
Types by n-gram Analysis. IEEE Information Assurance Workshop, 2005.

[2] M. Karresand and N. Shahmehri. File Type Identification of Data Frag-
ments by Their Binary Structure. IEEE Information Assurance Workshop,
2006.

[3] M. McDaniel and M. Heydari. Content Based File Type Detection Algo-
rithms. Hawaii International Conference on System Sciences, 2003.

[4] G. Hall and W. Davis. Sliding Window Measurement for File Type Iden-
tification. ManTech Cyber Solutions International White Paper.

[5] C. Veenman. Statistical Disk Cluster Classification for File Carving. Sym-
posium on Information Assurance and Security, 2007.

[6] R. Erbacher and J. Mulholland. Identification and Localization of Data
Types within Large-Scale File Systems. Systematic Approaches to Digital
Forensic Engineering, 2007.

15



[7] S. Moody and R. Erbacher. SÁDI - Statistical Analysis for Data Type Iden-
tification. Systematic Approaches to Digital Forensic Engineering, 2008.

[8] K. Shanmugasundaram and N. Memon. Automatic Reassembly of Docu-
ment Fragments via Context Based Statistical Models. Annual Computer
Security Applications Conference, 2003.

[9] G. Richard and V. Roussev. Scalpel: A Frugal and High-Performance File
Carver. Digital Forensics Research Workshop, 2005.

[10] W. Calhoun and D. Coles. Predicting the Types of File Fragments. Digital
Forensics Research Conference, 2008.

[11] V. Roussev and S. Garfinkel. File Fragment Classification – The Case
for Specialized Approaches. Systematic Approaches to Digital Forensics
Engineering, 2009.

[12] A. Shamir and N. van Someren. Playing Hide and Seek With Stored Keys.
International Conference on Financial Cryptography, 1999.

[13] S. Stolfo, K. Wang, and W. Li. Fileprint Analysis for Malware Detection.
WORM, 2005.

[14] M. Sutton, A. Greene, and P. Amini. Fuzzing: Brute Force Vulnerability
Discovery. Addison Wesley, 2007.

[15] G. Conti, E. Dean, M. Sinda, and B. Sangster. Visual Reverse Engineer-
ing of Binary and Data Files. Workshop on Visualization for Computer
Security, 2008.

[16] G. Conti and E. Dean. Visual Forensic Analysis and Reverse Engineering
of Binary Data. Black Hat USA, 2008.

[17] BinVis tool download. http://www.rumint.org/software/danglybytes/
db.zip.

[18] N. Freed and N. Borenstein. RFC2046 – Multipurpose Internet Mail Exten-
sions (MIME) Part Two: Media Types. Internet Engineering Task Force,
1996.

[19] Internet Assigned Numbers Authority. MIME Media Types. www.iana.
org, 6 March 2007.

[20] “010 Editor – Binary Template Archive”. SweetScape Software, www.
sweetscape.com.

[21] FILExt. filext.com, 8 December 2009.

[22] Ethnologue: Languages of the World, 16th Edition. Sil International, 2009.

[23] The Unicode Consortium. The Unicode Standard, Version 5.2.0, 2009.

16



[24] J. Erickson. Hacking: the Art of Exploitation, 2nd Edition. No Starch
Press, 2008.

[25] J. Maxon, S. Small, F. Monrose, and G. MacManus. English Shellcode.
ACM Conference on Computer and Communications Security, 2009.

17


